

Product Manual 91525 (Revision A) Original Instructions

In-Pulse[™] II Standard Multi-Point Driver

8280-1121, 8280-1122, 8280-1221

Woodward manual 26343 is also required.

Application Manual

<i>IMPORTANT</i> <i>DEFINITIONS</i>	 This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death. DANGER—Indicates a hazardous situation which, if not avoided, will result in death or serious injury. WARNING—Indicates a hazardous situation which, if not avoided, could result in death or serious injury. CAUTION—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury. NOTICE—Indicates a hazard that could result in property damage only (including damage to the control). IMPORTANT—Designates an operating tip or maintenance suggestion.
WARNING	The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage. The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.
installing, opera	e manual and all other publications pertaining to the work to be performed before ating, or servicing this equipment. Practice all plant and safety instructions and ilure to follow instructions can cause personal injury and/or property damage.
you have the lat The current rev The latest versi	n may have been revised or updated since this copy was produced. To verify that test revision, be sure to check the <i>publications page</i> on the Woodward website: <u>www.woodward.com/searchpublications.aspx</u> ision of all publications is shown in file " <u>current.pdf</u> ". on of most publications is available on the <i>publications page</i> . If your publication is e contact your customer service representative to get the latest copy.
electrical, or ot damage to the "negligence" w	eed modifications to or use of this equipment outside its specified mechanical, her operating limits may cause personal injury and/or property damage, including equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or ithin the meaning of the product warranty thereby excluding warranty coverage g damage, and (ii) invalidate product certifications or listings.
NOTICE	To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.
NOTICE	To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, <i>Guide for Handling and</i> <i>Protection of Electronic Controls, Printed Circuit Boards, and Modules.</i>

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

© Woodward 2010 All Rights Reserved

Contents

ELECTROSTATIC DISCHARGE AWARENESS	
CHAPTER 1. GENERAL INFORMATION Introduction Associated Publications General Safety Precautions	1 2
CHAPTER 2. INPUTS AND OUTPUTS Speed related Sensor Inputs Analog Inputs Analog Outputs Discrete Inputs Discrete Outputs Injection Output Drivers	3 3 3 4 4
CHAPTER 3. DESCRIPTION OF OPERATION Introduction ERV Cycling	7
CHAPTER 4. TOOLKIT ToolKit Introduction ToolKit Login / User levels Configuration Pages EFI Operation Pages	9 9 10
CHAPTER 5. COMMISSIONING Introduction Phase 1 Commissioning Steps Phase 2 Commissioning Steps Phase 3 Commissioning Steps Cylinder Temperature Balancing	37 37 37 37 38
CHAPTER 6. MODBUS SIGNALS LIST	
CHAPTER 7. J1939 CAN SIGNALS LIST Introduction	
CHAPTER 8. WIRING DIAGRAM	61
CHAPTER 9. SERVICE OPTIONS Product Service Options Woodward Factory Servicing Options Returning Equipment for Repair Replacement Parts Engineering Services How to Contact Woodward	65 66 67 67 68
Technical Assistance	68

Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- 2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.
- 4. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

NOTICE

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

List of Abbreviations

This is a list of abbreviations and terminology used in this manual:

ALM BI BO CI CO °CA °CS CPD CPU DCS DI DO EFI EMF ERV HMI HSS	Alarm - a warning signal Boolean Input (see also CI & DI) Boolean Output (see also CO & DO) Contact Input Contact Output Crank Angle Degrees Degrees Crank Shaft Closure Point Detection Central Processing Unit Digital Control System Discrete Input Discrete Output Electronic Fuel Injection Electromotive Force Electronic Rail Valve Human Machine Interface Depends on the context: • High speed shaft of the gearbox
	High signal selector in software
IP2	In-Pulse [™] II, Electronic Fuel Injection Control
kW	Kilowatts
LED	Light Emitting Diode
LSS	Depends on the context:
	Low speed shaft of the gearbox
MCU	Low signal selector in software Microcontroller
MMU	Man Machine Interface
MPU	Magnetic Pick-up sensor
mA	Milliamps
mV	Millivolts
NA	Not Applicable
	Not Available
NC	Normally Closed
NO	Normally Open
NU	Not Used
PC	Personal Computer
PCB PID	Printed Circuit Board
PLC	Proportional Integration Derivative Programmable Logic Controller
PSU	Power Supply Unit
PWM	Pulse Width Modulation
rpm	Revolutions per Minute (can also be expressed as "1/s")
ŚD	Shutdown
ТВ	Terminal Block
TBD	To be defined
TDC	Top Dead Centre
UPCI	Universal PC Interface
Vac	Volts (alternating current)
Vdc	Volts (direct current)

Chapter 1. **General Information**

Introduction

The Woodward part numbers related to the "In-Pulse™ II – Standard Multi Point Driver" are the following:

Curata m.

 System: Hardware: 110 V In-Pulse II Application software (speed pattern 2): 	8280-1121 8237-1178 5418-3079
 System: Hardware: 110 V In-Pulse II Application software (speed pattern 3,3): 	8280-1122 8237-1178 5418-4079
 System: Hardware: 24 V In-Pulse II Application software (speed pattern 2): 	8280-1221 8237-1180 5418-7079

IMPORTANT	Connector kits need to be ordered separately. Black J1&J2 Connectors: 8928-7039 (Delphi) or 8928-7112 (Cinch) White J3&J4 Connectors: 8928-7040 (Delphi) or 8928-7113 (Cinch)
	For more parts & service items please refer to manual 26343

The Woodward "In-Pulse II – Standard Multi Point Driver" has the following functionality:

- Multipoint injection based upon (variable) input duration & timing
- Cylinder Temperature balancing

Main Features:

- Fully configurable & adjustable from graphical user-interface ToolKit
- Configurable number of injector outputs from 1 to 18
- Extensive interfacing capabilities by hardwired signals, Modbus® * communications and J1939 CAN communications
- Offline test mode (click test) and Online test mode, which allows changing duration and timing per injector output
- Individual injector output Duration and Timing offsets from ToolKit userinterface, Modbus, and CAN
- Cylinder Temperature balancing can bias each injector output Duration, with adjustable bias rate and range
- Duration input can be hardwired (4-20 mA) through Modbus, through CAN, or from curve based on speed
- Timing input can be hardwired (4–20 mA) through Modbus, through CAN, from curve based on speed, or from curve based on Duration
- Closure Point Detection (CPD) allows automatic current profile optimizations and injector/valve wear diagnostics
- Optional ERV purging cycle when entering RUN mode
- Several Injector output current profiles; full manual, semi automatic and fully automatic
- Optional pre-injection for double injection events per cylinder
- Pull-in currents up to 20 A

-Modbus is a trademark of Schneider Automation Inc.

Associated Publications

The following publications contain additional product or installation information on Woodward controls & products, and related components. These can be downloaded with the following link: www.woodward.com/publications.

- 26343 In-Pulse II Electronic Fuel Injection Control
- 25070 Electronic Control Installation Guide
- 26260 Governing Fundamentals and Power Management
- 82715 Guide for Handling & Protection: Electronic Controls, PCBs, Modules

General Safety Precautions

Obey the following safety precautions when you install the unit:

- Obey all cautions or warnings given in the procedures.
- Never bypass or override machine safety devices.

Chapter 2. Inputs and Outputs

Speed related Sensor Inputs

Application software (speed pattern 2):

In this 4-cycle engine version, the control needs 3 signals;

- Teeth on Crank
- TDC on Crank pin

Wiring Pin Out: J1 - G3/F3/F2

5418-3079, 5418-7079

Phase on Cam pin

Wiring Pin Out: J1 - G1/F1/F2 Wiring Pin Out: J1 - E2/D1/D2

The speed sensor inputs and TDC can be either passive (MPU) or active (PROXIMITY).

The Phase pin needs to be a proximity type, MPU type is not allowed.

Application software (speed pattern 3,3): 5418-4079

In this 4-cycle engine version, the control needs 2 or 4 signals;

- Teeth on Crank (set #1)
- TDC on Cam pin (set #1)
- Teeth on Crank (set #2)
- TDC on Cam pin (set #2)

Wiring Pin Out: J1 - G3/F3/F2 Wiring Pin Out: J1 - E3/D1/D2 Wiring Pin Out: J1 - G1/F1/F2 Wiring Pin Out: J1 - E2/D1/D2

Set #2 can optionally be connected and used for redundancy purposes.

The speed sensor inputs can be either passive (MPU) or active (PROXIMITY). The TDC pin needs to be a proximity type, MPU type is not allowed.

Analog Inputs

The following analog input signals have been defined for this control:

- Duration Input (4-20 mA) Wiring Pin Out: J1 - P2/N3/N2
 - Timing Input (4-20 mA)
- Wiring Pin Out: J1 N1/M1/N2

Wiring Pin Out: J1 - H3/G2

Wiring Pin Out: J1 - H1/H2 Wiring Pin Out: J1 - B3/A3

Wiring Pin Out: J1 - A1/A2

Connect these signals if the control has been configuration for hardwired connection of these signals.

Analog Outputs

- 4-20 mA Analog Output #1
- 4-20 mA Analog Output #2
- 4-20 mA Analog Output #3
- 4-20 mA Analog Output #4

The following list of signals can be configured to be output on any of the 4 analog 4-20 mA outputs of this control:

- Speed
- Duration
- Timing

- Average CPD
- **EFI** Voltage
- MCU Voltage Fixed Value of choice
- Average Cylinder Temperature

For each parameter the range of the signal being output can be set from the ToolKit page.

3

Discrete Inputs

The following discrete input signals have been defined for this control:

RUN permissive
 Temperature Balancer permissive
 RESET command
 Pre-Injection enable
 Wiring Pin Out: J1 – E1/D2
 Wiring Pin Out: J1 – D3/D2
 Wiring Pin Out: J1 – C3/B2
 Wiring Pin Out: J1 – C2/B2

All contacts are defined as NO, close for action.

The RUN contact always needs to be connected and can be combined with RUN permissives from either CAN or Modbus.

The Temperature Balancer permissive contact always needs to be connected when using the Temperature Balancing, and can be combined with RUN permissives from either CAN or Modbus.

The RESET command contact needs be closed momentarily to reset any latched alarms in the control. From ToolKit it is also possible to issue a reset command.

The control can be configured to need an external Pre-Ignition enable contact to switch on the pre-ignition.

Discrete Outputs

- Discrete Output #1
- Discrete Output #2
- Discrete Output #3

Wiring Pin Out: J1 - K3/J2/K2 Wiring Pin Out: J1 - J3/J2/K2 Wiring Pin Out: J1 - K1/J2/K2

Wiring Pin Out: J1 - J1/J2/K2

• Discrete Output #4

The following list of signals can be configured to be output on any of the 4 discrete outputs of this control:

- Major Alarm
- Minor Alarm
- Mode Stopped
- Mode Click-Test
- Mode Running
- Mode On-Line Test
- EFI Run Permissive
- Speed > Minimum
- Injection Active
- Temperature Balancer Permissive
- Temperature Balancer Active
- ERV finished, ready for GAS

For each parameter the selection of the signal being output can be set from the ToolKit page.

Injection Output Drivers

CONNECTOR J3

Injector 1.1 (#1)	(+)	J3-A2	Injector 5.1 (#5)	(+)	J3-C1
	(-)	J3-A1		(-)	J3-B1
(#1 & #7)	shield	J3-A3	(#5 & #13)	shield	J3-C2
Injector 1.2 (#7)	(+)	J3-B2	Injector 5.2 (#11)	(+)	J3-D2
	(-)	J3-B3		(-)	J3-D1
(#1 & #7)	shield	J3-A3	(#11 & #17)	shield	J3-E1
Injector 1.3 (#13)	(+)	K3-C3	Injector 5.3 (#17)	(+)	J3-E2
	(-)	J3-D3		(-)	J3-E3
(#5 & #13)	shield	J3-C2	(#11 & #17)	shield	J3-E1

Injector 3.1 (#3)	(+)	J3-G1
	(-)	J3-H1
(#3)	shield	J3-F1

Injector 3.2 (#9)	(+)	J3-G3
	(-)	J3-H3
(#9)	shield	J3-F3

Injector 3.3 (#15)	(+)	J3-G3
	(-)	J3-H3
(#15)	shield	J3-F3

CONNECTOR J4

	1			1	
Injector 2.1 (#2)	(+)	J4-Y2	Injector 6.1 (#6)	(+)	J4-W1
	(-)	J4-Y1		(-)	J4-X1
(#2 & #8)	shield	J4-Y3	(#6 & #14)	shield	J4-W2
			-		
Injector 2.2 (#8)	(+)	J4-X2	Injector 6.2 (#12)	(+)	J4-T2
	(-)	J4-X3		(-)	J4-T1
(#2 & #8)	shield	J4-Y3	(#12 & #18)	shield	J4-S1
	•				
Injector 2.3 (#14)	(+)	K3-W3	Injector 6.3 (#18)	(+)	J4-S2
	(-)	J4-T3		(-)	J4-S3
(#6 & #14)	shield	J4-W2	(#12 & #18)	shield	J4-S1

Injector 4.1 (#4)	(+)	J4-P1
	(-)	J4-N1
(#4)	shield	J4-R1

Injector 4.2 (#10)	(+)	J4-P3
	(-)	J4-N3
(#10)	shield	J4-R3

Injector 4.3 (#16)	(+)	J4-P2
	(-)	J4-N2
(#16)	shield	J4-R2

Chapter 3. Description of Operation

Introduction

This chapter provides an overview of the features, setup, and operation of this In-Pulse™ II – Standard Multi-Point Driver.

The control defines 4 operational modes:

- Stopped Mode
- Click-Test Mode
- Running Mode
- On-Line Test Mode

The test modes can be selected on their respective ToolKit pages.

Stopped Mode

In the Stopped mode, EFI injection will be disabled. This mode stays active as long as any of these conditions is true:

- There is an active shutdown
- Speed < minimum
- EFI Injection permissives are absent

In Stopped Mode, it is possible for the operator to select Click-Test Mode.

Click-Test Mode

In the Click-Test mode. EFI injection can be enabled. This mode stays active as long as all of these conditions are true:

- Speed < minimum
- Time in Click-Test mode is under 1 hour

The operator can leave the Click-Test Mode at any time and return to Stopped Mode. This mode allows energizing the individual injector outputs with full control over the individual timing and duration. It is typically used to verify wiring from EFI to the correct cylinder. After 1 hour in this mode, the control will automatically leave this mode and return to Stopped Mode.

Running Mode

In the Running mode, EFI injection will be enabled. This mode stays active as long as all of these conditions is true:

- There is no shutdown
- Speed stays > minimum
- EFI Injection permissives stay present

In Running Mode, it is possible for the operator to select On-Line Test Mode. The EFI will follow the configured Duration & Timing in the Running mode.

On-Line Test Mode

The On-Line Test mode can be selected when the EFI is in Running mode. EFI injection will stay enabled. This mode stays active as long as all of these conditions is true:

- There is no shutdown
- Speed stays > minimum
- EFI Injection permissives stay present
- Time in On-Line Test mode is under 10 minutes

The operator can leave the On-Line-Test Mode at any time and return to Running Mode.

Each EFI injector output (Timing and/or Duration) can be put in test individually. When put in On-Line test mode, the Timing and/or Duration will freeze, and not follow the main Duration and/or Timing. For safety purposes, this mode will automatically be left after 10 minutes and it will return to normal Running Mode.

Only trained and qualified people shall enter the Online TEST mode!

Only enter Online TEST mode in steady state operation! Do not overfuel!

Be aware of knocking limits when advancing injection timing!

Cylinder Temperature Balancing

Cylinder Temperature Balancing can be enabled when the EFI is in Running mode. When all applicable permissives are True (contact input, CAN permissive, minimum load threshold), Cylinder Temperature Balancing becomes active. Individual cylinder injector duration will be biased (within the Bias Limit) such that all the cylinder temperatures tend to move toward each other. With Bias Rate the dynamic of this control can be optimized.

When temperature sensors fail, they will taken out of the average calculation. Optionally, Cylinder Temperature Balancing can be stopped when a set number of temperature sensors fail.

ERV Cycling

When EFI Running becomes active, it is possible to perform an "ERV Purge Cycle" sequence (if enabled). Duration & Timing will be switched over to pre-defined ERV Purge Cycle values for an adjustable amount of time. When the cycle ends, a discrete output "Ready for Gas" will become active, and the Duration & Timing will switch over to their normal inputs. When the EFI enters Stopped Mode, ERV Purge Cycling will be blocked for an adjustable amount of time.

Chapter 4. ToolKit

ToolKit Introduction

This chapter describes the parameters that can be configured, tuned and monitored.

Throughout, the Woodward user interface program ToolKit it used to configure and operate the In-Pulse[™] II – Standard Multi-Point driver.

ToolKit can be downloaded from the <u>www.woodward.com</u> website. ToolKit has certain software requirements like Windows XP and higher, DOT NET 3.5 and higher etc. Please consult the Woodward download page for detailed instructions.

In order to run the user interface, ToolKit needs to open a .WTOOL file and a corresponding .SID file. For the In-Pulse II – Standard Multi-Point driver, these files will be supplied with the control system.

When the .WTOOL file is opened, one can connect to the In-Pulse II control on its serial port #1 (RS-232) using a null-modem serial cable.

←→	RX
$\leftarrow \rightarrow$	ТΧ
$\leftarrow \rightarrow$	GND
	<→ <→

Prevent grounding issues when connecting a computer to an IP2, through its serial port and cable. Preferably use 1784-1099, which is an isolated serial USB port capable of RS-232, RS-485, and RS-422.

The communication for the serial port should be left at automatic. A dedicated serial null-modem cable 5416-614 can be ordered at Woodward.

NOTICE	Disconnect/disable Wifi, Bluetooth etc. prior to connecting to ToolKit; Improperly implemented drivers of these devices may cause problems.
--------	---

ToolKit will check the software version inside the In-Pulse II control with the .SID file which comes with the .WTOOL user interface tool. If these do not match, there is a mismatch between the In-Pulse II software version and the ToolKit tool.

For further details, please refer to the embedded Help included with the ToolKit program.

ToolKit Login / User levels

There are three user login levels defined in the ToolKit tool:

- Level 1 Password = 1
 - Monitoring level, freely accessible
- Level 8 Password = 1112
- Configure level, shall be limited to trained personnel.
- Level 16
 Password = Consult Woodward

Highest access level, limited to Woodward personnel.

Level 1 can be used by end-users to monitor parameters. It does not allow changing the configuration.

Level 8 can allows changing almost all configuration parameters.

Level 16 is the highest access level. It allows changing any configuration parameter, including the model related parameters for the injector output current profile.

Configuration Pages

When setting up the Configuration, the engine must be stopped and prevented from starting!

The Configure Pages shall be visited to properly setup the In-Pulse II – Standard Multi-Point driver:

- C01 : Configure EFI & Speed
- C02 : Configure EFI Outputs Selection
- C03 : Configure EFI Current Profile
- C04 : Configure EFI Inputs Selection
- C05 : Configure Outputs (DO and AO)
- C06 : Configure Temperature Balancing
- C07 : Configure Serial, CAN & Modbus
- C08 : Configure Alarm & Shutdown

CO1: Configure EFI & Speed

W.wood	WARD		
EFI Teeth Fault Timing Error	1 🚔 ♦ °CA	PRE-Injection EFI Pre-Injection Permi	sive
Speed Sensor #1		Enable PRE-Injection	
Type	PROX 🗸	Permissive from:	MMI
# Teeth	155 🔶 🗢		
Speed #1 Fault	Alarm		
TDC Sensor #1			
TDC adjust #1	42.0 🗢 🜩 °CA	Total Duration (°CA)	PRE-Injection Duration (°CA)
	42.0 Ø V CA		0.0 0.00
TDC #1 Fault	Alarm 🔽		4.0 0.00
			8.0 0.00
Phase Sensor #1			2.0 0.00
Phase #1 Fault	Alarm 🔽		16.0 0.00 20.0 0.00
			0.00
Speed Treshold			
Minimum Speed for Injection	75.0 🚖 🔷 rpm	Total Duration (°CA)	PRE-Injection Timing (°CA)
Minimum Speed for Injection	73.0 V V Ipin		0.0 310.0
			4.0 310.0
			8.0 310.0
			2.0 310.0
			6.0 310.0
			20.0 310.0

Setting up the speed sensing should be one of the first things to do.

Please refer to manual 26343 for details and limitations for the speed sensors.

Most of the speed related configuration settings require a reboot of the control for them to take effect.

SAVE tunables prior to rebooting the control!

Timing Error This is the number of degrees of timing error that is allowed. This determines the number of extra or missing teeth that the control can count without causing TEETH_FLT to be set to true. The extra or missing teeth allowed = TIM_ERROR / degrees per tooth. This value is rounded down to the closest integer number. If the actual tooth count differs by more than this amount then the TEETH_FLT output will be set to true.

Type Select either PROX or MPU

Teeth Sets the number of teeth for the speed sensor(s)

Speed #1/2 Fault Set the required action for a speed sensor failure. This can be either an Alarm, Shutdown or switchover to group #2 (if applicable).

#TDC adjust #1/2 Sets the distance in crank angle degrees from the true TDC reference point to the TDC point measured by the sensor. The range is 0 to 720°.

Example: If TDC is sensed before the true TDC by 10 degrees, then for a 2stroke engine TDC_ADJST1 should be set to 350 degrees. If the same conditions were true for a 4-stroke engine then TDC_ADJST1 should be set to 710 degrees.

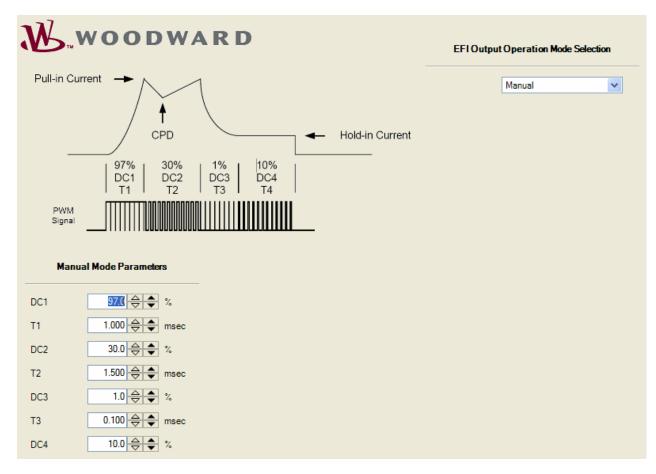
TDC #1/2 Fault Set the required action for a TDC sensor failure. This can be either an Alarm, Shutdown or switchover to group #2 (if applicable).

Minimum Speed Sets the minimum required speed that enables the injection control; this is typically set a bit below the maximum obtainable starter/cranking speed.

Pre- Injection When pre-injection is used, two tables will appear. These tables define the duration of the pre-injection in °CA, and the timing in °CA before normal injection.

CO2: Configure EFI Outputs Selection

WOODWARD	Multiplexer PWM frequency	CONFIGURE EFI outputs to be used Multiplexer 1	Name	Angular Position relative to 1.1
	20 kHz 💌	EFI Output 1.1	Cylinder 1R	0.0 🔶 ♣ °CS
		FI Output 1.2	Cylinder 2R	240.0 🔶 ♦ °CS
		EFI Output 1.3	Cylinder 3R	480.0 🔶 ♦ °CS
		Multiplexer 2		
	20 kHz 💙	FI Output 2.1	Cylinder 6L	90.0 🗢 🜩 °CS
		FI Output 2.2	Cylinder 4L	330.0 🗢 🜩 °CS
		FI Output 2.3	Cylinder 5L	570.0 🔶 ♦ °CS
		Multiplexer 3		
	20 kHz 🖌	FI Output 3.1	Cylinder 5R	120.0 🔶 🌩 °CS
		FI Output 3.2	Cylinder 6R	360.0 🔶 ♣ °CS
		EFI Output 3.3	Cylinder 4R	600.0 🔶 ♣ °CS
		- Multiplexer 4		
	20 kHz 🖌	EFI Output 4.1	Cylinder 2L	210.0 🔶 🌩 °CS
		FI Output 4.2	Cylinder 1L	450.0 🔶 ♣ °CS
		FI Output 4.3	Cylinder 3L	690.0 🔶 🜩 °CS
		Multiplexer 5		
	20 kHz 🗸	EFI Output 5.1	Output 5.1	0.0 🔶 🜩 °CS
		EFI Output 5.2	Output 5.2	0.0 🔶 🜩 ℃S
		EFI Output 5.3	Output 5.3	0.0 🔶 ♦ °CS
		Multiplexer 6		
	20 kHz 💌	EFI Output 6.1	Output 6.1	0.0 🔶 ♠ °CS
		EFI Output 6.2	Output 6.2	0.0 🔶 ♦ °CS
		EFI Output 6.3	Output 6.3	0.0 🔶 ♠ °CS


Up to 18 injector outputs can be used. They are distributed over 6 multiplexers of 3 injectors each. Per multiplexer group, only 1 injector can be active at any time. Using the firing order of the engine, the injectors output shall be distributed to cylinders such that there will be no overlap in activation time of injectors within the same multiplexer group.

Multiplexer PWM frequency Sets the PWM frequency of the injector outputs. 10 kHz - For valves with very large inductance. SOGAV[™] 250 or larger. 20 kHz - For valves with moderate inductance. All SOGAV & Rail valves 30 kHz - For valves with low inductance. Some common rail injectors. 150 kHz - For valves with very low inductance. Applications such as 12 V truck diesel injectors require this setting.

If the frequency is too low, the signal to noise ratio of the closure event suffers.

Each of the 18 injector outputs can be enabled by placing a "tick". An injector/cylinder **Name** can be entered and saved for convenience. The **Angular Position relative to 1.1** sets the crank angle degrees with respect to injector output 1.1. Output 1.1 shall remain at an offset of 0.0 relative to the real TDC.

CO3: Configure EFI Current Profile (Manual Mode)

The required **EFI Output Operation Mode Selection** can be selected from the drop down list.

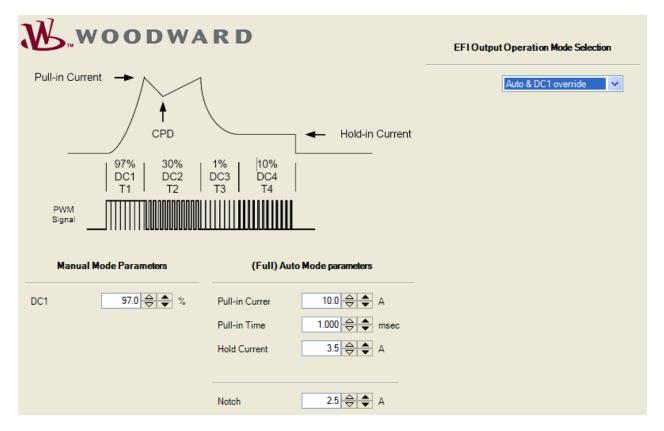
Manual mode The current profile is setup open loop, current is not monitored. There is no Closure Point Detection, no Open Coil diagnostics, no current compensation for (environmental) changes.

Typically this mode is used for common rail injectors when the injection duration is quite short (too short for proper automatic model operation).

DC1 PWM duty cycle for pull-in. Typically as high as possible for fast pull-

- in.
- T1 Pull in time

DC2 PWM duty cycle for pull-in2.


- T2 Pull-in2 time
- **DC3** PWM duty cycle for decay.
- T3 Decay time
- **DC4** PWM duty cycle for hold current.

DC1 and **T1** are adjusted such that the pull-in current & times match the valve/injector manufacturer's datasheet.

DC2 and **T2** are adjusted such that the pull-in time is according specification and the final current does not exceed the pull-in current. Typically due to needle or valve movement, the current will drop due to changing impedance and back-EMF of the injector/valve.

DC3 and **T3** are adjusted such that the decay time to the hold current is short. **DC4** is adjusted for the correct hold current of the injector/valve.

CO3: Configure EFI Current Profile (Auto Mode)

Auto mode The current profile is setup closed loop, current is actively controlled. There is Open Coil diagnostics and current compensation for (environmental) changes. There is no Closure Point Detection.

 Pull-in Current
 This is normally the worst-case value specified by the valve manufacturer

 Pull in Time
 Total Pull-in Time before decay to Hold current. This is normally the worst-case value specified by the valve manufacturer

 Hold Current
 After the valve closes the current is reduced to this level to maintain closure

 Notch
 Adaptive current control algorithm parameter used to control the size of the closure deflection.

 Typically set at (Pull-in current – Hold current) / 2

When the DC Override option has been chosen in **auto** mode: **DC1** PWM duty cycle for pull-in. Some valves/injectors may need a maximum limitation on the pull in PWM duty cycle.

CO3: Configure EFI Current Profile (Full Auto Mode)

RD		EFI Output Operati	ion Mode Selection
1% 10% DC3 DC4 T3 T4	Hold-in Current	Full Aut	o & DC1 override 💌
(Full) A	uto Mode parameters	Adaptive Model	Parameters
Pull-in Currer Pull-in Time Hold Current Notch	10.0 ◆ A 1.000 ◆ msec 3.5 ◆ A 2.5 ◆ A	Optimalization input Model resistance Inductance / Resistance input #1 Inductance / Resistance input #2 Back EMF CPD Time input CPD Time Left Margin CPD Time Right Margi	1 ⇒ 2.0 ⇒ ↓ 0.004 ⇒ ↓ 0.002 ⇒ ↓ 4.0 ⇒ ↓ 0.010 ⇒ ↓ 0.075 ⇒ ↓ 0.225 ⇒ ↓
	DC3 DC4 T3 T4 (Full) A Pull-in Currer Pull-in Time Hold Current	Hold-in Current 1% 10% DC3 DC4 T3 T4 (Full) Auto Mode parameters Full-in Currer 10.0 ⇒ A Pull-in Time 1.000 ⇒ msec Hold Current 3.5 ⇒ A	EFICUTPUT Operation Image: Colspan="2">Full Auto Image: Colspan="2">Model in Current 1% 10% Current 1% 10% Current 1% 10% Current 1% 100 A Optimalization input Pull-in Currer 10.0 A Optimalization input Pull-in Time 1.000 msec Model resistance Hold Current 3.5 A Inductance / Resistance input #1 Notch 2.5 A Back EMF CPD Time input CPD Time input CPD Time Left Margin

Full Auto mode Embedded algorithm automatically controls the current waveform and CPD.

Reports CPD for control and/or diagnostics

Reports open coil diagnostics

Reports valve parameters which may be useful for other prognostics

Compensate for variation in operating conditions such as fuel pressure, supply voltage, coil resistance, etc.

Compensate for unit to unit variation in injectors

Compensate for type to type variation (mix of injectors)

Compensate for aging and fouling effects

Tested with many valve types

Set Pull-in Current, Pull in Time, Hold Current, Notch, DC1 as per auto mode

CONV_RATE Used to control the step size of changes applied by the model each time it runs. Input is a percent of the total change identified by the model. Keep small to avoid reacting to transient conditions (~0.25) Temporarily make large during commissioning to make it faster (~0.5)

In-Pulse II—Standard Multi-Point Driver

K_STAB Stability constant for CPD control. Main (fast) control loop is for TIME_x and DC_x changes due to current feedback monitoring. Secondary (slow) control loop is for CPD control (notch control) to keep it properly placed between the margins. Large numbers cause slower reactions to changing CPD (~10). Small numbers allow faster reactions to CPD (notch) movement (~3). May want small number during commissioning to speed the process.

Model Resistance Directly proportional to hold-in current. Used by model to estimate DC4 for first iteration. $DC4 = I \times R / V$. Where V = Coil Volts, I = desired hold current

Inductance/Resistance #1 Time constant for current rise during TIME_1 Used by model to estimate T1 for first iteration. Larger values of LR1_IN will result in the first estimate of T1 being longer

Inductance/Resistance #2 Time constant for current fall during TIME_3 Used by model to estimate T3 for first iteration Larger values of LR2_IN will result in the first estimate of T3 being longer

Back EMF A measure of the energy needed to restore the pull-in current level after closure. Used by model to estimate DC2 for first iteration. Larger values of BEMF_IN will result in the first estimate of DC2 being higher

CPD Time An estimate of the time to valve closure. Used by model to locate the CPD anchor for the first iteration. The TIME_x and DC_x parameters are changed assuming a constant CPD. Set this value according to the expected CPD provided by the manufacturer.

CPD Time Left Margin Desired time from the peak of T1 until Notch Used again each time the model is run. Values that are too short will result in a loss of closure into T1. Smaller values cause T1 to increase.

CPD Time Right Margin Desired time from Notch until the peak of T2 Used again each time the model is run. Values that are too short will result in a loss of closure into T3. Smaller values cause incorrect values for T2 and DC2

IMPORTANT

Please consult Woodward for proper setup of the model parameters when using Woodward valves in Full Auto mode.

Woodward can also assist when using 3rd party valves or injectors.

CO4: Configure EFI Inputs Selection

W.wooi	DWARD		
EFI Run Permissive			
😑 EFI Run Contact Input			
Permissive from:	Contact Input		
Duration from:	Analog Input #1 🗸	Timing from:	Analog Input #2
			Analog Input #2
🔵 Duration Fail		🔴 Timing Fail	
Basic Duration	1.0 °CA	Basic Timing	360.0 °CA
4-20mA Input (%)	Duration (*CA)	4-20mA Input (%)) Timing (*CA)
0.0	0.0	2	0.0 0.
100.0	720.0		100.0 720.

The required **EFI Permissive, Duration & Timing Inputs** can be selected from their respective drop down lists.

EFI Run Permissive The input contact #1 is always needed. Another RUN permissive bit from either Modbus or CAN can be chosen. The green LED will light when all permissives are OK.

Duration Can originate from 4–20 mA input #1, or via CAN, or via Modbus or can be set to a fixed value from the ToolKit user interface. The signal will fail if the current is <4 mA or >20 mA, the CAN communication fails, or the Modbus communication fails.

In case of 4–20 mA or Modbus, input signal scaling can be adjusted. In case of Analog Input, the type of input signal can be set up in the Analog Input type dropdown list.

Timing Can originate from 4–20 mA input #2, or via CAN, or via Modbus or based upon a duration curve, speed curve, or can be set to a fixed value from the ToolKit user interface.

The signal will fail if the current is <4 mA or >20 mA, the CAN communication fails, or the Modbus communication fails.

In case of 4–20 mA or Modbus, input signal scaling can be adjusted.

In case of Analog Input the type of input signal can be setup in the Analog Input type drop down list.

In case of a duration based curve or speed based curve, 6 points are available.

CO5: Configure EFI Outputs (DO & AO)

W woor) M	ARD					
Discrete Output Selection							
DO #1	Majo	r Alarm	*				
D0 #2	Mino	r Alarm	*				
DO #3	Mod	e Running	*				
D0 #4	Tem	perature Balancer Permissive	*				
Analog Output Selection				Analog Output Selection			
A01 #1		Speed	*	AO #3		Timing	*
Speed (rpm)		Analog Output (%)		Timing (°CA)		Analog Output (%)	
	0		0.0		0		0.0
	5000		100.0		720		100.0
Analog Output Selection				Analog Output Selection			
A0 #2		Duration	*	AO #4		EFI Voltage	*
Duration (°CA)		Analog Output (%)		EFI Supply Voltage (V	ŋ	Analog Output (%)	
	0.0		0.0		0.0		0.0
	720.0		100.0		150.0		100.0

The following list of signals can be configured to be output on any of the 4 discrete outputs of this control:

- Major Alarm
- Minor Alarm
- Mode Stopped
- Mode Click-Test
- Mode Running
- Mode On-Line Test
- EFI Run Permissive
- Speed > Minimum
- Injection Active
- Temperature Balancer Permissive
- Temperature Balancer Active
- ERV finished, ready for GAS

The following list of signals can be configured to be output on any of the 4 analog 4-20 mA outputs of this control:

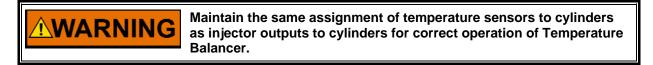
- Speed
- Duration
- Timing
- Average Cylinder Temperature
- Average CPD
- EFI Voltage
- MCU Voltage
- Fixed Value of choice

Output signal scaling can be adjusted

CO6: Configure Temperature Balancing

₩.wo	ODWARD			Temperatures from : Permissive from : Temperature Balan
	— Temperature — Flt — 0.0 °C			Load ThresHold
Cylinder 1R utput 1.2 Cylinder 2R	0.0 °C ● — Temperature — Flt — 0.0 °C ●	Cylinder 2L EFI output 4.2 Cylinder 1L	0.0 °C — Temperature — Fit — 0.0 °C	Temperature Sensor Fail Action
output 1.3 Cylinder 3R	- Temperature Flt 0.0 °C ●	EFI output 4.3 Cylinder 3L		# Failed Sensors for stop Temp Balancer
output 2.1	— Temperature — Flt — 0.0 °C	EFI output 5.1	Temperature Fit 0.0 ℃ ●	
	- Temperature - Flt - 0.0 ℃			
utput 2.3 Cylinder 5L	- Temperature - Flt - Flt - 0.0 °C ●	EFI output 5.3 Output 5.3	- Temperature Fit 0.0 ℃	
utput 3.1	— Temperature — Flt — 0.0 °C	EFI output 6.1	Temperature Fit 0.0 °C	
	Temperature — Flt — 0.0 °C ●		Temperature Fit 0.0 °C	
output 3.3 Cylinder 4R	- Temperature - Flt - 0.0 °C ●	EFI output 6.3 Output 6.3		

Temperatures from: The cylinder temperatures can originate from the Axiomatic TC module, J1939 CAN, or Modbus. Select Not Used to disable Temperature Balancing.


Temperature Balancer Permissive The input contact #4 is always needed. Another Temperature Balancer permissive bit from either Modbus, CAN or an adjustable minimum Load/Duration threshold can be chosen. The green LED will light when all permissives are OK and the EFI is active.

Temperature Sensor Failure: This defines the action that will be taken when any of the cylinder temperature sensor signals fails. Possible actions are: No Alarm, Alarm, Alarm & Stop Balancer & Shutdown.

In case Alarm & Stop Balancer is chosen, the number of failed sensors can be set that will result in Stop Balancer.

Cylinders with a failed temperature sensor will not participate in Temperature Balancing anymore.

The page displays the actual cylinder temperatures and a Green or Red LED to indicate the signal (or communications) is OK or in fault.

CO7: Configure Serial, CAN & Modbus

M woo	DWARD				
Serial Port #1 (RS-232)				CAN	
Baud rate	115200 🔽			Use CAN Communication	
# data bits	8 🗸			EFI Driver NODE ID	1 🚔 🖨
Parity	OFF (none) 🔽			CAN Source NODE ID	255 🚖 📤
# stop bits	1 💌			Online	
Fault				Bus Off	
				J 1939 Green LED	
Serial Port #2 (RS-485)		Modbus		J1939 Red LED	
Baud rate	115200 🗸	Use Modbus Communication		CAN Load	0 %
# data bits	8 🗸	Protocol	RTU 🗸	Duplicate Address	
Parity	OFF (none) 🔽	Address	1 🚔 🖨	RX Warning	
# stop bits	1 💌	Time Out	5.0 \ominus 🖨	•	
Fault		Link error		RX Error	
-		Exception error		RX Overflow	0
		•		TX Warning	
		Error Percentage	0.0	TX Error	
		Error Number	0	TX Overflow	0
				RX/TX Errors	0

Serial Port #1 is always RS-232 and is used for ToolKit exclusively. Serial Port #2 is always RS-485 and is used for Modbus communications.

The following properties can be configured:

Baud rate: The baud rate can be: 110, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600 or 115200. At the highest baud rates, the serial cabling (capacitance, twisted, shielding & length) can be a limiting factor. When getting communication errors, one can resort to better cabling, shorter lengths and lower baud rates.

# data bits:	Choose between 7 or 8
Parity:	Choose between OFF (none), ODD or EVE
# stop bits:	Choose between 1, 1.5 or 2

The fault LED will light up RED when communication is in not OK.

When **Use Modbus Communication** is selected, the following properties can be configured:

Protocol: Choose the Modbus ASCII or RTU protocol.

Address: Choose between 1 and 247. Defines the slave block address on the Modbus network

Time Out: Choose between 0.0 and 60.0. Defines the Modbus link dead time [s] allowed before a link error occurs

The **Link error** LED goes RED when the Modbus slave fails to answer a data request in specified number of time-out seconds.

Ν

The **Exception error** LED goes RED when an exception error such as "illegal Modbus command" is detected.

When Modbus communication is enabled and operating OK, none of the LED's should be lit and **Error Percentage** should be 0 (or going towards 0), and **Error Number** shall be 0.

When Use CAN Communication is selected, the following properties can be configured:

EFI Driver NODE ID Choose between 0 and 253. Defines the node ID for this driver unit

CAN Source NODE ID Choose between 0 and 255. Defines the Producer's node ID number. If set to the default value of 255 the control will accept any node's message with the correct message ID. This is needed for the CAN messages this driver unit receives (for example receiving duration offsets by from an PLC system).

All J1939 CAN status LED's shall be either GREEN or not lit when communication is OK.

CO8: Configure Alarms & Shutdowns

₩.woodw	ARD		Alarm () reset () Minor () Major	Inhibit RESET RESET on RU Automatic RES	N permissive	
EFI Output Alarms		Temperatures Alarms				
Over-Current	Alarm 🖌	Temperature Fault	Alarm & Stop Balancer 🔽			
Open-Coil	Alarm 🔽	Closure Point Detection Alarms —				
Multiplexer Over-Current	Alarm 💙	CPD Deviation	No Alarm 🖌			
Multiplexer Injection Limit	Alarm 🔽	Deviation Threshold	1.000 🗢 🔷 msec			
EFI Voltage Alarms		EFI Voltage Shutdowns		Serial Communication Alarms		
Voltage Low Alarm	Alarm 🗸	Voltage Low Shutdown	Shutdown 🗸	Modbus Fault	Alarm 😽	
Voltage Low Threshold	100.0 🚔 🔷 V	Voltage Low Threshold	90.0 🔶 🔷 V	CAN Fault	Alarm 🗸	
MCU Alarms		MCU Shutdowns		Speed & TDC Alarms		
Voltage High Alarm	Alarm 💙	Voltage High Shutdown	Shutdown 🔽	Speed #1 Fault	Alarm & switch to GRP#2 💌	
Voltage High Threshold	27.0 🗢 🔷 V	Voltage High Threshold	29.0 🗢 🜩 V	TDC #1 Fault	Alarm	
Voltage Low Alarm	Alarm 💙	Voltage Low Shutdown	Shutdown 🔽	Speed #2 Fault	Alarm 🗸]
Voltage Low Threshold	21.0 🗢 🔷 V	Voltage Low Threshold	19.0 🔤 🜩 V	TDC #2 Fault	Alarm 💌]
Temperature High Alarm	Alarm 🖌	Temperature High Shutdown	Shutdown 🔽			
Temperature High Threshold	65.0 ⇔ • ℃	Temperature High Threshold	85.0 🚖 € °C			

For most failures, it is possible to choose between No action, Alarm, Alarm when running, Shutdown or Shutdown when running.

The individual alarms can be monitored on the Alarms page. The individual shutdowns can be monitored on the Shutdown page. Alarm & shutdowns are also logged; see the Event Manager page.

Alarms & shutdowns are latching, so a reset command is required to reset them.

The reset command can be initiated from this ToolKit page, by the RESET contact input, automatically every time the RUN permissives becomes TRUE or automatically by an internal cyclic RESET generator (cycle time is adjustable between 0 and 600 seconds).

EFI Voltage Low Thresholds Choose between 21 and 100 Vdc. When the EFI supply voltage goes below these values, the respective Alarm or Shutdown action is activated.

MCU Voltage High Thresholds Choose between 18 and 34 Vdc. When the MCU supply voltage goes above these values, the respective Alarm or Shutdown action is activated.

MCU Voltage Low Thresholds Choose between 18 and 34 Vdc. When the MCU supply voltage goes below these values, the respective Alarm or Shutdown action is activated.

MCU Temperature High Thresholds Choose between 21 and 100 °C. When the MCU temperature goes above these values, the respective Alarm or Shutdown action is activated.

CPD Deviation Threshold Choose between 0 and 1000 ms. When an injectors individual CPD deviates from the average CPD time by more than the threshold value, the respective Alarm or Shutdown action is activated.

EFI Operation Pages

WARNING Configuration must have been set up prior to operating the EFI.

The following EFI operation pages are available:

- A01 : Main Page
- A02 : Monitor EFI outputs
- A03 : Temperature Balancing Bias Control
- A04 : Closure Point Detection Deviation
- A05 : Timing & Duration Manual bias
- A06 : Timing & Duration Modbus bias
- A07 : Timing & Duration CAN bias
- A08 : Test EFI outputs
- A09 : ERV Purge Cycling Sequence
- B01 : Alarms
- B02 : Shutdowns
- B03 : Event Manager
- B04 : System Information

A01: Main Page

W.wood	WART					10.15
			0.0 rpm	Stopped mode	Basic Duration	1.0 °C
Alarm		Speed (EFI)	0.0 rpm		Basic Timing	360.0 *C
Minor						
🕒 Major 🧧	Temp Balance Activ	e 🕒 Injection Active	Permissive to Run			
Jser Info						
User text row 1 (up to 38 cha	racters)					
User text row 2 (up to 38 cha	racters)					
User text row 3 (up to 38 cha	racters)					
🕨 Start 🔊 View Live 🔍 2	loom In 🛛 🔍 Zoom C	Dut 🔯 Zoom Full		🔽 Properties 🚳 Export		
3000						
Ē.						
0		20 seco	inds			
<						
				9:57:33 PM		
		laximum				
	m O	3000				
	A O	720				
	CA O	720				
SPEED (EFI) rp	m O	30000				

The Main Page shows an overview of the operation parameters & mode for the EFI driver unit.

The three rows of **User Info** can be filled out with a text of choice, each line can contain up to 38 characters. These text strings can be saved like any other parameter.

There is an embedded **Trend** on the page, but many parameters can be trended by using an ad hoc trend. Place the mouse cursor over a display parameter, right click and there will be a popup **add to trend**.

A02: Monitor EFI Outputs

1)	ODWARD						
	UDWARD	Speed (HW)	0.0 rpm	Stopp	ed mode	Basic Duration	0.0 °CA
Alarm — —		Speed (EFI)	0.0			Basic Timing	360.0 °CA
🗌 reset 🛛 🕘							
Minor							
Major	Temp Balance Active	Injection Active	Permissive to Run				
EFI output 1.1	— Ena – Run – Lim – Curr - Coil -	– Duration ——— Timing ———	— Temperature —	EFI output 6.2	— Ena – Run – L	im – Curr - Coil – Duration — Tim	ing — Temperature —
Cylinder A1	••••	0.0 360.0	0.0 °C	Cylinder B1	9 9	0.0	360.0 0.0 °C
EFI output 1.2	— Ena – Run – Lim – Curr - Coil -	- Duration Timing	— Temperature —	EFI output 6.3	— Ena – Run – L	im – Curr - Coil – Duration – Tim	ing — Temperature —
Cylinder A2	••••	0.0 360.0	0.0 °C	Cylinder B2	99	0.0	360.0 0.0 °C
EFI output 1.3	— Ena – Run – Lim – Curr - Coil -	– Duration — Timing —	- Temperature	EFI output 6.1	— Ena – Run – L	im – Curr - Coil – Duration – Tim	ing — Temperature —
Cylinder A3	••••	0.0 360.0	0.0 °C	Cylinder B3	99	0.0	360.0 0.0 °C
EFI output 5.1	— Ena – Run – Lim – Curr - Coil -	- Duration Timing	— Temperature —	EFI output 4.3	— Ena – Run – L	im – Curr - Coil – Duration – Tim	ing — Temperature —
Cylinder A4	••••	0.0 360.0	0.0 °C	Cylinder B4	9 9	0.0	360.0 0.0 °C
EFI output 5.3	— Ena – Run – Lim – Curr - Coil -	- Duration Timing	— Temperature —	EFI output 4.2	— Ena – Run – L	im – Curr - Coil – Duration — Tim	ing — Temperature —
Cylinder A5		0.0 360.0	0.0 °C	Cylinder B5	99	0.0	360.0 0.0 °C
EFI output 5.2	— Ena – Run – Lim – Curr - Coil -	– Duration ——— Timing ———	— Temperature —	EFI output 4.1	— Ena – Run – L	im – Curr - Coil – Duration — Tim	ing — Temperature —
Cylinder A6		0.0 360.0	0.0 °C	Cylinder B6	99	0.0	360.0 0.0 °C
EFI output 3.1	— Ena – Run – Lim – Curr - Coil -	– Duration — Timing —	— Temperature —	EFI output 2.3	— Ena – Run – L	im – Curr - Coil – Duration — Tim	ing — Temperature —
Cylinder A7	••••	0.0 360.0	0.0 °C	Cylinder B7	99	0.0	360.0 0.0 °C
EFI output 3.2	— Ena – Run – Lim – Curr - Coil -	- Duration Timing	— Temperature —	EFI output 2.1	— Ena – Run – L	im – Curr - Coil – Duration – Tim	ing — Temperature —
Cylinder A8	••••	0.0 360.0	0.0 °C	Cylinder B8	• •	0.0	360.0 0.0 °C
EFI output 3.3	— Ena – Run – Lim – Curr - Coil -	- Duration Timing	— Temperature —	EFI output 2.2	— Ena – Run – L	im – Curr - Coil – Duration — Tim	ing — Temperature —
Cylinder A9		0.0 360.0	0.0 °C	Cylinder B9	99	0.0	360.0 0.0 °C

The Monitor EFI outputs page shows an overview of the all the EFI outputs and their individual statuses and parameters.

For each injector output, the duration and timing (after biasing) are shown. The cylinder temperature is shown as well, if not used it will display 0.0 °C.

The **Ena** LED indicates the injector is enabled and the **Run** LED is a feedback that the hardware output is activated.

The **Lim** LED indicates that indicates a fuel injection limiting action has occurred. It may indicate that an overlap has occurred between pre-injection, main injection, and post-injection pulses. It may also indicate a fuel injection duration that is too long or that an injection timing violation has occurred.

The **Cur** LED field indicates that an overcurrent condition was sensed on the individual output channel or multiplexer. To reset this fault, the overcurrent condition must be removed, and a Reset command must be issued.

The **Coil** LED field indicates that an open coil was detected.

Alarm reset • Minor	O D WA R D	Enable Temp Balancer Temp Balancer Permissive	DeadBand Average Temp	1.0 ♀ ♥ ℃ 0.0 ℃	Balancer Duration Bias Limit Balancer Rate	5.0 🔶 🕻 0.100 🔶 🕻
🕒 Major	Temp Balance Active	Injection Active Permissive to Run				
EFI output 1.1	— Temperature — Flt —	Duration Bias	EFI output 6.2	Temperature	Flt — Duration Bias —	
Cylinder A1	0.0 °C 🕚	0.0 °CA	Cylinder B1	0.0 °C	0.0 °CA	
EFI output 1.2		Duration Bias	EFI output 6.3	- Temperature	Flt — Duration Bias —	
Cylinder A2	0.0 °C 🕚	0.0 °CA	Cylinder B2	0.0 °C	• 0.0 °CA	
EFI output 1.3		Duration Bias	EFI output 6.1	- Temperature	Flt — Duration Bias —	
Cylinder A3	0.0 °C 🌑	0.0 °CA	Cylinder B3	0.0 °C	0.0 °CA	
FI output 5.1		Duration Bias	EFI output 4.3	Temperature	Flt — Duration Bias —	
Cylinder A4	0.0 °C 🕚	0.0 °CA	Cylinder B4	0.0 °C	0.0 °CA	
FI output 5.3	— Temperature — Flt —	Duration Bias	EFI output 4.2	Temperature	Flt — Duration Bias —	
Cylinder A5	0.0 °C 🕚	0.0 °CA	Cylinder B5	0.0 °C	0.0 °CA	
FI output 5.2	— Temperature — Flt —	Duration Bias	EFI output 4.1	Temperature —	Flt — Duration Bias —	
Cylinder A6	0.0 °C 🕚	0.0 °CA	Cylinder B6	0.0 °C	0.0 °CA	
EFI output 3.1		Duration Bias	EFI output 2.3	Temperature	Flt — Duration Bias —	
Cylinder A7	0.0 °C 🕚	0.0 °CA	Cylinder B7	0.0 °C	0.0 °CA	
FI output 3.2		Duration Bias	EFI output 2.1	Temperature	Flt — Duration Bias —	
Cylinder A8	0.0 °C 🕚	0.0 °CA	Cylinder B8	0.0 °C	0.0 °CA	
FI output 3.3	— Temperature — Flt —	Duration Bias	EFI output 2.2	Temperature	Flt — Duration Bias —	
Cylinder A9	0.0 °C 🌑	0.0 °CA	Cylinder B9	0.0 °C	0.0 °CA	

Max Duration Bias Limit Choose between 0 and 720 °CA.

Sets the maximum absolute bias that the Temperature Balancer can apply to individual injector outputs.

Balancer Rate Choose between 0 and 10 °CA/s.

Sets the bias change rate that the Temperature Balancer uses to change the bias for individual injector outputs.

Dead Band

Choose between 0 and 100 °C.

Sets the minimum difference that a cylinder temperature needs with respect to the average temperature, before the Temperature Balancer will start to apply an individual injector output bias.

Tick **Enable Temp Balancer** to start this bias control.

Cylinder individual temperatures, sensor faults & biases will be shown.

When a cylinder temperature sensor has failed, it will not participate in the temperature average, and its temperature balancer bias will remain at 0%.

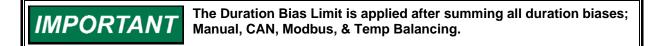
A04: Closure Point Detection Deviation

11/ 110	ODWAR	D					
	UDWAR	D Speed (Hardware)	0.0 rpm	Stopp	ed mode	Enable CPD [Deviation
Alarm		Speed (EFI)	0.0 rpm			Average CPD	10.000 mse
🔄 reset 🛛 🕘						Deviation Threshold	1.000 🚔 🖨 mse
Minor		Injection Active	Permissive to Run			Theaton	
Major							
EFI output 1.1	CPD Time	- Deviation -		EFI output 4.1	CPD Time	Deviation -	
Cylinder 1R	10.000	•		Cylinder 2L	10.000	۲	
EFI output 1.2	CPD Time	- Deviation -		EFI output 4.2	CPD Time	Deviation -	
Cylinder 2R	10.000	•		Cylinder 1L	10.000	۲	
EFI output 1.3	CPD Time	- Deviation -		EFI output 4.3	CPD Time	- Deviation -	
Cylinder 3R	10.000	•		Cylinder 3L	10.000	۲	
EFI output 2.1		- Deviation -		2110000001	CPD Time	- Deviation -	
Cylinder 6L	10.000	•		Output 5.1	10.000	•	
EFI output 2.2	CPD Time	Deviation -		EFI output 5.2	CPD Time	- Deviation -	
Cylinder 4L	10.000	•		Output 5.2	10.000	•	
EFI output 2.3	CPD Time	- Deviation -		EFI output 5.3	CPD Time	- Deviation -	
Cylinder 5L	10.000	•		Output 5.3	10.000	۲	
EFI output 3.1		- Deviation -		EFI output 6.1	CPD Time	 Deviation - 	
Cylinder 5R	10.000	•		Output 6.1	10.000	•	
EFI output 3.2	CPD Time	- Deviation -		EFI output 6.2	CPD Time	- Deviation -	
Cylinder 6R	10.000	•		Output 6.2	10.000	•	
EFI output 3.3	CPD Time	- Deviation -		EFI output 6.3	CPD Time	- Deviation -	
Cylinder 4R	10.000	•		Output 6.3	10.00	٢	

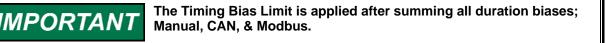
Deviation Threshold Choose between 0 and 1000 ms. Sets the maximum CPD deviation time between the average CPD time and an individual injector output.

When an output measure a CPD time that differs from the average by more than this threshold, an alarm/shutdown event can be generated for this output.

CPD deviation will only work with Full Automatic mode.


A05: Timing & Duration—Manual Bias

Alarm	D D W A R D			Duration Bias Limit Timing Bias Limit	450 ↔ °CA 450 ↔ °CA	
🕘 Major	Temp Balance Active	Injection Active	Permissive to Run			
EFI output 1.1 Cylinder A1	Duration Bias	Timing Bias		EFI output 6.2 Cylinder B1	Duration Bias	Timing Bias
EFI output 1.2 Cylinder A2	─ Duration Bias ──── 0.00 🔶 ♥ °CA	Timing Bias		EFI output 6.3 Cylinder B2	Duration Bias	Timing Bias
EFI output 1.3 Cylinder A3	─ Duration Bias 0.00 🔶 🗣 °CA	Timing Bias		EFI output 6.1 Cylinder B3	- Duration Bias 0.00 🔶 € °CA	- Timing Bias 0.00 🔶 ♥ °CA
EFI output 5.1 Cylinder A4	─ Duration Bias ─── 0.00 🗢 🜩 °CA	Timing Bias		EFI output 4.3 Cylinder B4	- Duration Bias 0.00 🔶 € °CA	- Timing Bias 0.00 🔶 ♥ °CA
EFI output 5.3 Cylinder A5	Duration Bias 0.00 🗢 °CA	Timing Bias 0.00 🚭 ➡ °CA		EFI output 4.2 Cylinder B5	Duration Bias	- Timing Bias 0.00 🔶 ♥ °CA
EFI output 5.2 Cylinder A6	Duration Bias 0.00 ♀ ℃A	Timing Bias		EFI output 4.1 Cylinder B6	- Duration Bias 0.00 🚖 ♥ °CA	- Timing Bias 0.00 ♀ °CA
EFI output 3.1 Cylinder A7	Duration Bias 0.00 ♀ ℃A	Timing Bias		EFI output 2.3 Cylinder B7	- Duration Bias 0.00 🚔 ♥ °CA	- Timing Bias 0.00 ♀ °CA
EFI output 3.2 Cylinder A8	Duration Bias 0.00 ⊖ ◆ °CA	Timing Bias		EFI output 2.1 Cylinder B8	- Duration Bias 0.00 🚖 ♣ °CA	- Timing Bias 0.00 ♀ °CA
EFI output 3.3 Cylinder A9	Duration Bias 0.00 ♀ ● °CA	Timing Bias		EFI output 2.2 Cylinder B9	Duration Bias	- Timing Bias 0.00 ♀ ♥ °CA


Duration Bias Choose between -720 and 720 °CA. Sets the individual injector output Duration bias.

Timing Bias Choose between -720 and 720 °CA. Sets the individual injector output Timing bias.

Duration Bias Limit Choose between -720 and 720 °CA. Sets the maximum absolute overall manual duration bias for an individual injector output.

Timing Bias Limit Choose between 0 and 720 °CA. Sets the maximum absolute overall manual timing bias for an individual injector output. This limit is applied after summing all timing biases; Manual, CAN, & Modbus.

A06: Timing & Duration—Modbus Bias

W.woo	D D W A R D		Use Modbus Communication	on 🗌 Enable Modi	bus Timing bias	Enable Modbus	Duration bias
Alarm				Offset	0.000 🔶 🜩	Offset	0.000 🚖 🖨
🗌 reset 🛛 🥥				Multiplier	100.000 🔶 🜩	Multiplier	100.000
🥌 Minor						Max Bias	5.00 😂 🔷 °CA
😑 Major	Temp Balance Active	Injection Active	Permissive to Run				
EFI output 1.1	Modbus Duration Bias	Modbus Timing Bias		EFI output 2.1	— Modbus Duration Bias ——	Modbus Timing Bias	
Cylinder A1	0.0 °CA	0.0 °CA		Cylinder B1	0.0 °CA	0.0	°CA
EFI output 1.2	Modbus Duration Bias	Modbus Timing Bias		EFI output 2.2	 Modbus Duration Bias 	Modbus Timing Bias	
Cylinder A2	0.0 °CA	0.0 °CA		Cylinder B2	0.0 °CA	0.0	°CA
EFI output 1.3	- Modbus Duration Bias	Modbus Timing Bias		EFI output 2.3	 Modbus Duration Bias 	Modbus Timing Bias	
Cylinder A3	0.0 °CA	0.0 °CA		Cylinder B3	0.0 °CA	0.0	°CA
EFI output 3.1	Modbus Duration Bias	Modbus Timing Bias		EFI output 4.1	Modbus Duration Bias	Modbus Timing Bias	
Cylinder A7	0.0 °CA	0.0 °CA		Cylinder B7	0.0 °CA	0.0	°CA
EFI output 3.2	Modbus Duration Bias	Modbus Timing Bias		EFI output 4.2	Modbus Duration Bias	Modbus Timing Bias	
Cylinder A8	0.0 °CA	0.0 °CA		Cylinder B8	0.0 °CA	0.0	°CA
EFI output 3.3	– Modbus Duration Bias ––––	Modbus Timing Bias		EFI output 4.3	 Modbus Duration Bias 	Modbus Timing Bias	
Cylinder A9	0.0 °CA	0.0 °CA		Cylinder B9	0.0 °CA	0.0	°CA
EFI output 5.1	Modbus Duration Bias	Modbus Timing Bias		EFI output 6.1	- Modbus Duration Bias	Modbus Timing Bias	
Cylinder A4	0.0 °CA	0.0 °CA		Cylinder B4	0.0 °CA	0.0	°CA
EFI output 5.2	- Modbus Duration Bias	Modbus Timing Bias		EFI output 6.2	- Modbus Duration Bias	Modbus Timing Bias	
Cylinder A6	0.0 °CA	0.0 °CA		Cylinder B6	0.0 °CA	0.0	°CA
EFI output 5.3	- Modbus Duration Bias	Modbus Timing Bias		EFI output 6.3	- Modbus Duration Bias	Modbus Timing Bias	
Cylinder A5	0.0 °CA	0.0 °CA		Cylinder B5	0.0 °CA	0.0	°CA

To use the timing & duration biases from Modbus, each can be enabled/disabled.

By default, Timing Biases need to be sent in °CA * 100; This results in a possible range of- 32 to +32 °CA timing bias from Modbus.

By default, Duration Biases need to be sent in °CA * 100; This results in a possible range of- 32 to +32 °CA duration bias from Modbus.

By default the max Modbus Bias is set to +/- 5 °CA. This can be changed in the box "MAX Bias".

When Modbus communication fails, the biases stay at the last received values.

A07: Timing & Duration – CAN Bias

M wo	O D W A R D		Use CAN communication	Enable CA	N Timing bias	Enable CAN E)uration b
Alarm						MAX Bias	
🗌 reset 🛛 🕥							
Major	Temp Balance Active	Injection Active	Permissive to Run				
FI output 1.1	CAN Duration Bias	CAN Timing Bias		EFI output 2.1		— CAN Timing Bias —	
Cylinder A1	0.0 °CA	0.0 °CA		Cylinder B1	0.0 °CA	0.0	*CA
FI output 1.2	CAN Duration Bias	CAN Timing Bias		EFI output 2.2	CAN Duration Bias	— CAN Timing Bias —	
Cylinder A2	0.0 °CA	0.0 °CA		Cylinder B2	0.0 °CA	0.0	°CA
FI output 1.3	CAN Duration Bias	CAN Timing Bias		EFI output 2.3	CAN Duration Bias	— CAN Timing Bias —	
Cylinder A3	0.0 °CA	0.0 °CA		Cylinder B3	0.0 °CA	0.0	*CA
FI output 3.1	CAN Duration Bias	CAN Timing Bias		EFI output 4.1		— CAN Timing Bias —	
Cylinder A7	0.0 °CA	0.0 °CA		Cylinder B7	0.0 °CA	0.0	°CA
FI output 3.2	CAN Duration Bias	CAN Timing Bias		EFI output 4.2	CAN Duration Bias	— CAN Timing Bias —	
Cylinder A8	0.0 °CA	0.0 °CA		Cylinder B8	0.0 °CA	0.0	°CA
FI output 3.3	CAN Duration Bias	CAN Timing Bias		EFI output 4.3	CAN Duration Bias	— CAN Timing Bias —	
Cylinder A9	0.0 °CA	0.0 °CA		Cylinder B9	0.0 °CA	0.0	°CA
FI output 5.1	CAN Duration Bias	CAN Timing Bias		EFI output 6.1	— CAN Duration Bias —	— CAN Timing Bias —	
Cylinder A4	0.0 °CA	0.0 °CA		Cylinder B4	0.0 °CA	0.0	°CA
FI output 5.2	CAN Duration Bias	CAN Timing Bias		EFI output 6.2		— CAN Timing Bias —	
Cylinder A6	0.0 °CA	0.0 °CA		Cylinder B6	0.0 °CA	0.0	°CA
FI output 5.3	CAN Duration Bias	CAN Timing Bias		EFI output 6.3	CAN Duration Bias	— CAN Timing Bias —	
Cylinder A5	0.0 °CA	0.0 °CA		Cylinder B5	0.0 °CA	0.0	°CA

To use the timing & duration biases from CAN, each can be enabled/disabled.

CAN Timing Biases range from -15.875 to +15.875 °CA

CAN Duration Biases range from -15.875 to +15.875 °CA

By default the max CAN Bias is set to +/- 5 °CA. This can be changed in the box "MAX Bias".

When CAN communication fails, the biases go to 0.

IMPORTANT

A08: Test EFI Outputs (Click TEST Mode)

117		-		-								
W wo	U		Α	KI	Speed (HW)	0.0 rpm		Click TEST mo	ode		Click-test Duration	5.0 🚔 ♥ °CA
Alarm					Speed (EFI)	220.0		Click TEST m	ode 💙]	Click-test Timing	10.0 🔶 🜩 °CA
🗌 reset 🛛 🕘							Test-Time Remaining	35	68 s		Click Test Frequenc	55 🚖 🜩 Hz
Minor							. to the second s					
Major		Ten	np Bala	nce Acti	ve Sinjection Active	Permissive to Run						
EFI output 1.1	- Ena	- Run	OC -	Test	Test Duration	Test Timing	EFI output 6.2	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A1	٩	9	•		0.0 \ominus 🗢	0.0 😂 🖨	Cylinder B1	• •			0.0 😂 🖨	0.0 🗢 🜩
EFI output 1.2	— Ena	- Run -	- OC -	Test	Test Duration	Test Timing	EFI output 6.3	Ena - Run	- OC -	Test	Test Duration	Test Timing
Cylinder A2	٩	0	۹		0.0 🗢 🗢	0.0 🔤 🖨	Cylinder B2	• •	•		0.0 🔶 🌩	0.0 🗢 🗢
EFI output 1.3	- Ena	- Run -	OC -	Test	Test Duration	Test Timing	EFI output 6.1	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A3	٩	9	۹		0.0 🗢 🜩	0.0 \ominus 🖨	Cylinder B3	• •	•		0.0 \ominus 🖨	0.0 🗢 🜩
EFI output 5.1	— Ena	- Run	- OC -	Test	Test Duration	Test Timing	EFI output 4.3	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A4	٩	0	•		0.0 🔤 🜩	0.0 \ominus 🖨	Cylinder B4	9 9	•		0.0 🔤 🖨	0.0 🗢 🜩
EFI output 5.3	- Ena	- Run	- OC -	Test	Test Duration	Test Timing	EFI output 4.2	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A5	٩	0	۹		0.0 🔶 🜩	0.0 🚔 🖨	Cylinder B5	• •	•		0.0 \ominus 🗢	0.0 🗢 🜩
EFI output 5.2	— Ena	Run	- OC -	Test	Test Duration	Test Timing	EFI output 4.1	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A6	٩	9	9		0.0 🗢 🜩	0.0 🚔 🖨	Cylinder B6	• •	•		0.0 🗢 🜩	0.0 🗢 🜩
EFI output 3.1	— Ena	- Run -	- OC -	Test -	Test Duration	Test Timing	EFI output 2.3	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A7	٩	0	۹		0.0 🔤 🜩	0.0 \ominus 🖨	Cylinder B7	• •	•		0.0 \ominus 🜩	0.0 🗢 🜩
EFI output 3.2	Ena	- Run	OC -	Test	Test Duration	Test Timing	EFI output 2.1	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A8	0	9	9		0.0 🔤 🜩	0.0 🚔 🗬	Cylinder B8	• •	•		0.0 🗢 🜩	0.0 🗢 🜩
EFI output 3.3	- Ena	- Run	OC -	Test	Test Duration	Test Timing	EFI output 2.2	— Ena – Run	- OC -	Test	Test Duration	Test Timing
Cylinder A9	٩	0	•		0.0 🚓 🜩	0.0 🚔 🖨	Cylinder B9	• •			0.0 🚖 🖨	0.0 🗢 🜩

When an engine is stopped, the **Click TEST mode** can be selected from the drop down selector.

The EFI driver hardware generates an internal test speed signal, which can be adjusted with **Click Test Frequency**, ranging from 32 Hz to 6 kHz.

Initially the common **Click-test Duration** (0~720 °CA) & **Timing** (0~720 °CA) will be copied to each individual EFI output, once it has been activated in Click Test mode. From then on, the individual duration & timing can be changed.

The **Ena** LED indicates the injector is enabled and the **Run** LED is a feedback that the hardware output is activated.

The **OC** LED field indicates that an open coil was detected.

Select **No TEST mode** to return to normal stopped mode.

Click TEST mode will be ended automatically after 1 hour.

A08: Test EFI Outputs (Online TEST Mode)

	ODV	V A	KI	Speed (Hardware)		514 rpm		Online T	EST mod	e					
Alarm				Speed (EFI)		514 rpm		Online	FEST mo	le 🗸					
🗌 reset 🛛 🕘				Injection /	Active		Test time remain		560	s					
Minor							remain								
Major															
EFI output 1.1	— Ena – Run	- OC -	Test -	Test Duration	- Test -	Test Timing	EFI output 4.1 —		Ena – F	un - C	с – т	est - 1	Test Duration	- Test -	Test Timing
Cylinder 1R	99	9		10.455 🔶 🗢		0.0 \ominus 🖨	Cylinder 2	Ľ	۲	•	•		0.000 🔶 🜩		0.0 🔶 🜩
EFI output 1.2	— Ena – Run	- OC -	- Test -	Test Duration	- Test -	Test Timing	EFI output 4.2 —		Ena – F	un - C	с – т	est - 1	Test Duration	- Test -	Test Timing
Cylinder 2R	99	۹		10.455 🚖 🖨		0.0 \ominus 🖨	Cylinder 1	L	۲	•	•		0.000 🔶 🜩		0.0 🔶 🜩
EFI output 1.3	— Ena – Run	- OC -	- Test -	Test Duration	- Test -	Test Timing	EFI output 4.3 —		Ena – F	un - C	С — Т	est - '	Test Duration	- Test -	Test Timing
Cylinder 3R	99	۹		10.455 🔶 🜩		0.0 🔤 🜩	Cylinder 3	L	۲	•	•		0.000 🔶 🜩		0.0 🔶 🜩
EFI output 2.1	- Ena - Bun	- 00 -	- Test -	Test Duration	– Test –	Test Timing									
Cylinder 6L	99			0.000 🚖 🖨		0.0 🚖 🖨									
EFI output 2.2	— Ena – Run	- OC -	- Test -	Test Duration	- Test -	Test Timing									
Cylinder 4L	99			0.000 🔶 🜩		0.0 🔤 🜩									
EFI output 2.3	— Ena – Run	- OC -	Test -	Test Duration	- Test -	Test Timing									
Cylinder 5L	99	9		0.000 🔶 🗬		0.0 🗢 🜩									
EFI output 3.1	- Ena - Bun	- 00 -	- Test -	Test Duration	- Test -	Test Timing									
Cylinder 5R	9 9			0.000 🔶 🜩		0.0 🔶 🗢									
EFI output 3.2	Ena – Run	- OC -	Test	Test Duration	- Test -	Test Timing									
Cylinder 6R	9 9			0.000 🔶 🜩		0.0 🗢 🜩									
EFI output 3.3	- Ena - Run	- OC -	Test	Test Duration	- Test -	Test Timing									
Cylinder 4R	a			0.000 🚖 🖨		0.0 🚖 🜩									

When an engine is running, the Online TEST mode can be selected from the drop down selector.

Only trained and qualified people shall enter the Online TEST mode! ARNING

Only enter Online TEST mode in steady state operation! RNING Do not overfuel! Be aware of knocking limits when advancing injection timing!

When the Test (Duration) is ticked for an EFI output, it will freeze the main duration at that point in time. From then on, it will not follow the main duration anymore, but one has full manual control over the Test Duration (0~720 °CA). Untick it, to go back to normal operation.

When the **Test** (Timing) is ticked for an EFI output, it will freeze the main timing at that point in time. From then on, it will not follow the main timing anymore, but one has full manual control over the Test Duration (0~100%). Untick it, to go back to normal operation.

The Ena LED indicates the injector is enabled and the Run LED is a feedback that the hardware output is activated. The **OC** LED field indicates that an open coil was detected.

Select **No TEST mode** to return to normal stopped mode.

Online TEST mode will be ended automatically after 10 minutes, or after a shutdown.

Woodward

MPORTAN

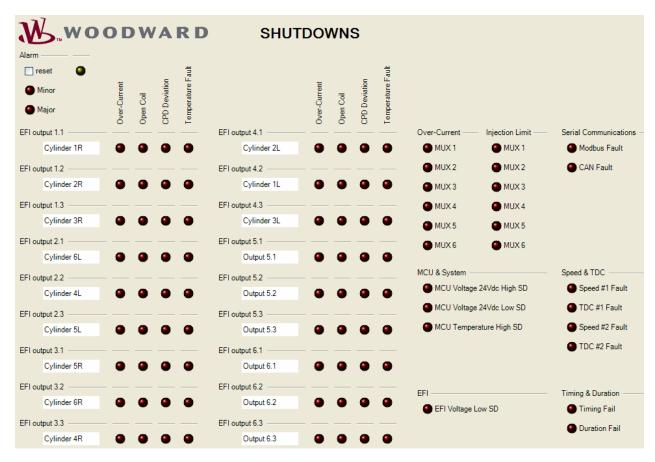
A09: ERV Purge Cycling Sequence

WOO	DWARD					
	JUWARD	Speed (HW)	0.0 rpm	Stopped mode	Basic Duration	0.0 °CA
Alarm — —		Speed (EFI)	0.0 rpm		Basic Timing	0.0 °CA
🗌 reset 🛛 🕘						
Minor						
Major	Temp Balance Active	Injection Active	Permissive to Run			
Enable ERV Purge Cyc	ling					
Enable Enter Hurge Cyc	ling	Enable EFI				
		•				
ERV Purge Time	5.0 🔶 🌩 s	Purging				
ERV Block Time	30.0 🗢 🜩 s	Ready for GAS				
ERV Duration	20.(🚔 € °CA					
ERV Timing	310.0 😂 🜩 °CA					

When the **ERV Purge Cycling** Sequence is enabled, the **ERV Purge Time** can be tuned between 0 and 240 seconds, the **ERV Block Time** can be tuned between 0 and 240 seconds, the **ERV Duration** can be tuned between 0 and 720 °CA, the **ERV Timing** can be tuned between 0 and 720 °CA,

When the **ERV Purge Cycling** Sequence is enabled, as soon as all injection permissives are TRUE, this purge sequence will start. Duration & Timing will switch-over to the **ERV Duration & Timing** value respectively, and the purge will continue until **ERV Purge Timer** has expired. Only then the **Ready for Gas** discrete output will become active, which should used as a permissive for allowing gas admission to the engine. Duration & Timing switch back to their "normal" values.

When the **ERV Purge Cycling** Sequence is disabled, as soon as all injection permissives are TRUE, **Ready for Gas** discrete output will become active, which should used as a permissive for allowing gas admission to the engine. Duration & Timing always stay at their "normal" values.


When injection is stopped, **ERV Block Time** will need to expire first, before another ERV Purge Cycle will be permitted.

	OC) M	Α	RD		ALAF	MS				
Alarm reset Minor Major EFI output 1.1 Cylinder 1R EFI output 1.2 Cylinder 2R	Over-Current	Open Coil	CPD Deviation	Temperature Fault	EFI output 4.1 — Cylinder 2L EFI output 4.2 — Cylinder 1L		Open Coil	CPD Deviation	Temperature Fault	Over-Current — Injection Limit — MUX 1 MUX 1 MUX 2 MUX 2 MUX 3 MUX 3	 Serial Communications Modbus Fault CAN Fault
EFI output 1.3 Cylinder 3R EFI output 2.1 Cylinder 6L	•	•	•	•	EFI output 4.3		• •	•	•	MUX 4 MUX 4 MUX 5 MUX 6 MUX 6	
EFI output 2.2 Cylinder 4L EFI output 2.3 Cylinder 5L	•	•	•	•	EFI output 5.2	•	• •	•	•	MCU & System	Speed & TDC Speed #1 Fault TDC #1 Fault Speed #2 Fault
EFI output 3.1 Cylinder 5R EFI output 3.2 Cylinder 6R	•	•	•	•	EFI output 6.1	•	• •	•	•	MCU Alarm System Alarm EFI FI F	TDC #2 Fault
EFI output 3.3 Cylinder 4R	•	•	•	•	EFI output 6.3	•	•	•	•	EFI Voltage Low ALM	

B01: Alarms (Minor Alarms)

The Alarm page displays active and latched alarms with red LED's. Alarms will not necessarily interrupt running operation mode of the EFI output.

B02: Shutdowns (Major Alarms)

The Shutdowns page displays active and latched shutdowns with red LED's. Shutdowns will always stop the running operation mode of the EFI output.

B03: Event Manager

Minor		D 11						
	Year	Heal Months —	ime Clock	– Days –			Time Power-Up	ers
Major	2009	montris	12	Days	7 🙆 BT(C.FAULT		382 Hours
					•		0.	JUZ HUUIS
	8 🜩		4 🜩	10 -	🗧 🗌 Set	Time & Date	Running	
	Hours	— Minutes —		Seconds				0.12 Hours
	11		20		57		0.00 🚖	+ Hours
								• moars
	10 🌩		45 🜩	0 -	-		Pre-Set	
			_					
Even		ACTIVE	Occurrences		Total active time 2009-12-07 11:	Previously active time 00:00:00		Running Ho
	1 - Driver Stopped Mode 80 - Driver EFI Voltage Low	INACTIVE	1		2009-12-07 11:	00:09:58		
	0 - Driver EFI Voltage Low	INACTIVE	1		00:12:32	00:09:54		
	2 - Driver Running Mode	INACTIVE		2009-12-07 11:13:3	00:00:40	00:06:19		
	3 - Online Test Mode	ACTIVE		2009-12-07 11:14:1	00:06:19	00:00:00		

The Event Manager page displays a log of all Alarms, Shutdowns and Events that have happened.

The Event Manager logs the number of occurrences and the hours certain event have been active or have been latched without being reset.

The Event Manager memory is non-volatile, so when the EFI driver is reboot, the memory will be cleared.

When **Reset All** is pressed, the Event Memory log will be cleared.

B04: System Information

WOODWARD

_MASTERSY	's_info		Status	 Part Numbers & 9 	MCU Status		EFI CORE	E Status
ystem Information M_TOT_LOAD	29.0	Voltages MON_24	27.742	PART_NUM	8280-1121		SPEED	0.0
SYS_LOAD	0	MON_P1	2.243	APPL_PN	5418-3079		TOOTH_CNT	0
RG5_LOAD	25	- MON_P2	2.952	REV A			- TDC_RATIO	0.000
RG10_LOAD	4	- MON_P3	5.015	SERIAL_NUM			TETH_RATIO	0.000
RG20_LOAD	0	MON_PRX	20.269	BOOT_PN			COIL_VOLTS	9.6
RG40_LOAD	0						INJ_ACTIVE	
RG80 LOAD	0	Temperatures CELSIUS	39.44	 Faults CLOCK_FL1 	т		PHASE_FLAG	
- RG160_LOAD	0	GEESIOS	00.11	EE_PRI_FL			TDC_FLAG	
DLE_TIME	0			EE_SEC_FL			TEETH_FLT	
SYS_ALM				FLASH_FL1			SPD_FLT1	
SYS_FLT		Memory		GND_FAUL			TDC_FLT1	
RG_SLIP		CAL_AVAIL	24575	PS_FAULT			PHS_FLT1	
FAULT		EE_AVAIL	1756	BAM_FLT		0	SPD_FLT2	
EE_BUSY		BAM_AVAIL	250876	RST_STS		49336	TDC_FLT2	
C_PWD	False	FLSH_AVAIL	142256	LAST_RESET		0	PHS_FLT2	
S_PWD	False	FLSH_CHKSM	-613239207					
		CAL_CHKSM	-372987698					
							REBOOT	
							Toggle within 2 second	

The System Information page will typically be not needed for normal operation of the EFI driver. It contains low level detail data, that may be of use to Woodward.

Chapter 5. Commissioning

Introduction

Suggested tools for commissioning the IP2:

- Oscilloscope
- Current clamp
- Multimeter

We suggest commissioning the IP2 according the following procedures:

- Phase 1 commissioning Mounting, wiring and configuration of the IP2 and valves/injectors
- Phase 2 commissioning
 Offline Click-testing of valves/injectors
- Phase 3 commissioning
 Speed signals & EFI running mode
- Cylinder Temperature Balancing Cylinder temperature sensors & balancing

Phase 1 Commissioning Steps

- 1. Check the mounting, wiring and fuel conditions for the SOGAVs if applicable, the manufacturers injector and fuel pump etc.
- 2. Double check the mounting, wiring and fuel conditions.
- 3. Check the wiring to the IP2 hardware, according to the guidelines in the IP2 manual 26343.
- 4. Double check the wiring.
- 5. Apply supply voltage to the IP2; this can be either high voltage or low voltage.
- 6. If possible, initially apply current limiting to limit any damage in case of short circuits in the wiring.
- 7. Connect a null-modem serial cable between PC and the IP2.
- 8. Start-up the In-Pulse[™] II standard Multi-Point driver ToolKit tool.
- 9. It should be possible to make a connection once the IP2 has booted up (only takes a few seconds after applying power).
- 10. Configure the IP2 using the ToolKit tool configuration pages.
- 11. Double check the configuration & save to the IP2 and as a file on the PC.
- 12. Verify the input and output signals are OK; that is, analog and digital inputs and outputs.
- 13. If possible, turn the engine to create and verify the necessary speed, TDC and Phase signals.

Phase 2 Commissioning Steps

- 1. The **phase 1 commissioning** shall have been finished.
- 2. Apply EFI supply high voltage to the IP2 if this has not been done yet.
- 3. Keep the engine in a shutdown state (no permissives) and enter Click-Test mode.

- Choose an injector output to calibrate & test. Typically output #1.1 for cylinder #1.
- 5. The injector or valve will shortly be opened in a cyclic way. Typically this results in audible "clicking".
- 6. When no clicks are heard, one can increase the test duration.
- 7. Verify the current profile with a current clamp and oscilloscope. Make sure the pull-in currents and holding currents are according the valve/injector manufacture datasheets.
- 8. If current profile seems incorrect, one might need to (temporarily) switch to full manual mode to set the PWM output times & frequencies manually to "create" the correct current profile.
- 9. Repeat the click-test for each output to verify correct valve/injector wiring and operation.
- 10. When finished, save tunables to the IP2 and as a file on the PC.

Phase 3 Commissioning Steps

- 1. The phase 2 commissioning shall have been finished.
- 2. Keep the engine in a shutdown state (no permissives) and turn the engine. Verify all speed signals are input correctly and there are no faults.
- 3. Double check the real engine TDC with the speed sensing TDC & Offset as configured in the IP2.
- 4. Allow the engine to run by setting all permissives to True. Start the engine and observe the IP2 enters Running Mode. Observe the engine keeps running and follows the Duration and Timing inputs/settings.
- 5. Enter On-Line Test Mode and verify all injector outputs can be taken into test mode and can be individually be changed for Duration & Timing.

Cylinder Temperature Balancing

- 1. The **phase 3 commissioning** shall have been finished.
- 2. Verify all cylinder temperature signals are input OK.
- 3. Verify correct temperature sensor connection to cylinder. Enter On-Line Test Mode. For each cylinder, take the duration into manual mode and make a little change. Observe the correct temperature will follow the manual change. Repeat for all cylinders.
- 4. Enable cylinder temperature balancing by setting all permissives to True. Observe correct behavior; that is, all temperature tend to move to each other. Optimize the cylinder temperature balancing by adjusting the Bias Limit, Balancer Rate and Deadband parameters.

Chapter 6. Modbus Signals List

Introduction

This chapter lists the Modbus List with the In-Pulse[™] II – Standard Multi Point Driver system parameters which are available for monitoring & control by external systems like SCADA, PLC etc.

The In-Pulse II Modbus is always "slave".

Boolean Writes

Address	Input	Description
0:0001		Duration Signal OK
0:0002		Timing Signal OK
0:0003		Reset command
0:0004		Run permissive
0:0005		Pre-Injection 1 command
0:0006		(Spare)
0:0007		(Spare)
0:0008		(Spare)
0:0009		(Spare)
0:0010		Temp Balance Permissive
0:0011		Temperature OK 1.1
0:0012		Temperature OK 1.2
0:0013		Temperature OK 1.3
0:0014		Temperature OK 2.1
0:0015		Temperature OK 2.2
0:0016		Temperature OK 2.3
0:0017		Temperature OK 3.1
0:0018		Temperature OK 3.2
0:0019		Temperature OK 3.3
0:0020		Temperature OK 4.1
0:0021		Temperature OK 4.2
0:0022		Temperature OK 4.3
0:0023		Temperature OK 5.1
0:0024		Temperature OK 5.2
0:0025		Temperature OK 5.3
0:0026		Temperature OK 6.1
0:0027		Temperature OK 6.2
0:0028		Temperature OK 6.3
0:0029		Temperature OK 7.1 (Spare)
0:0030		Temperature OK 7.2 (Spare)
0:0031		Temperature OK 7.3 (Spare)
0:0032		Temperature OK 8.1 (Spare)
0:0033		Temperature OK 8.2 (Spare)
0:0034		Temperature OK 8.3 (Spare)

Boolean Reads

Address	Description
1:0001	Major Alarm
1:0002	Minor Alarm
1:0003	Stopped Mode
1:0004	Click Test Mode
1:0005	Running Mode
1:0006	Online Test Mode
1:0007	EFI permissive
1:0008	Speed Permissive
1:0009	Injection Active
1:0010	Temp Balancing Permissive
1:0011	Temp Balancing Active
1:0012	ERV finished, Ready for GAS
1:0013	ERV Purge is active
1:0014	
1:0015	j
1:0016	
1:0017	
1:0018	
1:0019	
1:0020	
1:0021	Output 1.1 is used
1:0022	Output 1.2 is used
1:0023	Output 1.3 is used
1:0024	Output 2.1 is used
1:0025	Output 2.2 is used
1:0026	Output 2.3 is used
1:0027	Output 3.1 is used
1:0028	Output 3.2 is used
1:0029	Output 3.3 is used
1:0030	Output 4.1 is used
1:0031	Output 4.2 is used
1:0032	Output 4.3 is used
1:0033	Output 5.1 is used
1:0034	Output 5.2 is used
1:0035	Output 5.3 is used
1:0036	Output 6.1 is used
1:0037	Output 6.2 is used
1:0038	Output 6.3 is used
1:0039	Output 7.1 is used (Spare)
1:0040	Output 7.2 is used (Spare)
1:0041	Output 7.3 is used (Spare)
1:0042	Output 8.1 is used (Spare)
1:0043	Output 8.2 is used (Spare)
1:0044	Output 8.3 is used (Spare)
1:0045	· · · · · · · · · · · · · · · · · · ·
1:0046	
1:0047	
1:0048	
1:0049	
1:0050	AL001 - Output 1.1 Over-Current
1:0051	AL002 - Output 1.2 Over-Current

Address	Description
1:0052	AL003 - Output 1.3 Over-Current
1:0053	AL004 - Output 2.1 Over-Current
1:0054	AL005 - Output 2.2 Over-Current
1:0055	AL006 - Output 2.3 Over-Current
1:0056	AL007 - Output 3.1 Over-Current
1:0057	AL008 - Output 3.2 Over-Current
1:0058	AL009 - Output 3.3 Over-Current
1:0059	AL010 - Output 4.1 Over-Current
1:0060	AL011 - Output 4.2 Over-Current
1:0061	AL012 - Output 4.3 Over-Current
1:0062	AL013 - Output 5.1 Over-Current
1:0063	AL014 - Output 5.2 Over-Current
1:0064	AL015 - Output 5.3 Over-Current
1:0065	AL016 - Output 6.1 Over-Current
1:0066	AL017 - Output 6.2 Over-Current
1:0067	AL018 - Output 6.3 Over-Current
1:0068	AL019 - Output 7.1 Over-Current (Spare)
1:0069	AL020 - Output 7.2 Over-Current (Spare)
1:0070	AL021 - Output 7.3 Over-Current (Spare)
1:0071	AL022 - Output 8.1 Over-Current (Spare)
1:0072	AL023 - Output 8.2 Over-Current (Spare)
1:0073	AL024 - Output 8.3 Over-Current (Spare)
1:0074	AL101 - Output 1.1 Open-Coil
1:0075	AL102 - Output 1.2 Open-Coil
1:0076	AL103 - Output 1.3 Open-Coil
1:0077	AL104 - Output 2.1 Open-Coil
1:0078	AL105 - Output 2.2 Open-Coil
1:0079	AL106 - Output 2.3 Open-Coil
1:0080	AL107 - Output 3.1 Open-Coil
1:0081	AL108 - Output 3.2 Open-Coil
1:0082	AL109 - Output 3.3 Open-Coil
1:0083	AL110 - Output 4.1 Open-Coil
1:0084	AL111 - Output 4.2 Open-Coil
1:0085	AL112 - Output 4.3 Open-Coil
1:0086	AL113 - Output 5.1 Open-Coil
1:0087	AL114 - Output 5.2 Open-Coil
1:0088	AL115 - Output 5.3 Open-Coil
1:0089	AL116 - Output 6.1 Open-Coil
1:0090	AL117 - Output 6.2 Open-Coil
1:0091	AL118 - Output 6.3 Open-Coil
1:0092	AL119 - Output 7.1 Open-Coil (Spare)
1:0093	AL120 - Output 7.2 Open-Coil (Spare)
1:0094	AL121 - Output 7.3 Open-Coil (Spare)
1:0095	AL122 - Output 8.1 Open-Coil (Spare)
1:0096	AL123 - Output 8.2 Open-Coil (Spare)
1:0097	AL124 - Output 8.3 Open-Coil (Spare)
1:0098	AL201 - Output 1.1 CPD Deviation
1:0099	AL202 - Output 1.2 CPD Deviation
1:0100	AL203 - Output 1.3 CPD Deviation
1:0101	AL204 - Output 2.1 CPD Deviation
1:0102	AL205 - Output 2.2 CPD Deviation
1:0103	AL206 - Output 2.3 CPD Deviation
1:0104	AL207 - Output 3.1 CPD Deviation
<u>į </u>	

.	u
Address	Description
1:0105	AL208 - Output 3.2 CPD Deviation
1:0106	AL209 - Output 3.3 CPD Deviation
1:0107	AL210 - Output 4.1 CPD Deviation
1:0108	AL211 - Output 4.2 CPD Deviation
1:0109	AL212 - Output 4.3 CPD Deviation
1:0110	AL213 - Output 5.1 CPD Deviation
1:0111	AL214 - Output 5.2 CPD Deviation
1:0112	AL215 - Output 5.3 CPD Deviation
1:0113	AL216 - Output 6.1 CPD Deviation
1:0114	AL217 - Output 6.2 CPD Deviation
1:0115	AL218 - Output 6.3 CPD Deviation
1:0116	AL219 - Output 7.1 CPD Deviation (Spare)
1:0117	AL220 - Output 7.2 CPD Deviation (Spare)
1:0118	AL221 - Output 7.3 CPD Deviation (Spare)
1:0119	AL222 - Output 8.1 CPD Deviation (Spare)
1:0120	AL223 - Output 8.2 CPD Deviation (Spare)
1:0121	AL224 - Output 8.3 CPD Deviation (Spare)
1:0122	AL301 - Temperature 1.1
1:0123	AL302 - Temperature 1.2
1:0124	AL303 - Temperature 1.3
1:0125	AL304 - Temperature 2.1
1:0126	AL305 - Temperature 2.2
1:0120	AL306 - Temperature 2.3
1:0127	AL307 - Temperature 3.1
1:0128	AL308 - Temperature 3.2
1:0129	
	AL309 - Temperature 3.3
1:0131	AL310 - Temperature 4.1
1:0132	AL311 - Temperature 4.2
1:0133	AL312 - Temperature 4.3
1:0134	AL313 - Temperature 5.1
1:0135	AL314 - Temperature 5.2
1:0136	AL315 - Temperature 5.3
1:0137	AL316 - Temperature 6.1
1:0138	AL317 - Temperature 6.2
1:0139	AL318 - Temperature 6.3
1:0140	AL319 - Temperature 7.1 (Spare)
1:0141	AL320 - Temperature 7.2 (Spare)
1:0142	AL321 - Temperature 7.3 (Spare)
1:0143	AL322 - Temperature 8.1 (Spare)
1:0144	AL323 - Temperature 8.2 (Spare)
1:0145	AL324 - Temperature 8.3 (Spare)
1:0146	AL401 - Timing Input Fault
1:0147	AL402 - Duration Input Fault
1:0148	AL403 - Speed #1 Fault
1:0149	AL404 - Speed #2 Fault
1:0150	AL405 - TDC #1 Fault
1:0151	AL406 - TDC #2 Fault
1:0152	AL407 - PHS #1 Fault (Spare)
1:0153	
1:0154	
1:0155	Ì
1:0156	AL411 - Multiplexer #1 Over-Current
-	AL412 - Multiplexer #2 Over-Current

Address	Description
1:0158	AL413 - Multiplexer #3 Over-Current
1:0159	AL414 - Multiplexer #4 Over-Current
1:0160	AL415 - Multiplexer #5 Over-Current
1:0161	AL416 - Multiplexer #6 Over-Current
1:0162	AL417 - Multiplexer #7 Over-Current (Spare)
1:0163	AL418 - Multiplexer #8 Over-Current (Spare)
1:0164	AL421 - Multiplexer #1 Injection Limit
1:0165	AL422 - Multiplexer #2 Injection Limit
1:0166	AL423 - Multiplexer #3 Injection Limit
1:0167	AL424 - Multiplexer #4 Injection Limit
1:0168	AL425 - Multiplexer #5 Injection Limit
1:0169	AL426 - Multiplexer #6 Injection Limit
1:0170	AL427 - Multiplexer #7 Injection Limit
1:0170	AL428 - Multiplexer #8 Injection Limit
1:0172	AL431 - Driver Supply Voltage Low
1:0172	AL432 - Driver Supply Voltage High
1:0173	AL433 - Driver Temperature High
1:0175	AL434 - Driver EFI Voltage Low
1:0176	AL435 - Driver MCU Alarm
1:0177	AL436 - Driver System Alarm
1:0178	AL430 - Driver System Alarm AL437 - Driver Modbus Fault
1:0178	AL437 - Driver Modbus Fault
1:0179	
1:0180	
1:0182	
1:0183	
1:0184	
1:0185	
1:0186	
1:0187	
1:0188	
1:0189	
1:0100	
1:0190	
1:0191	
1:0192	
1:0193	
1:0194	
1:0195	
1:0196	
1:0197	
1:0198	
1:0200	SD501 - Output 1.1 Over-Current
1:0200	SD507 - Output 1.1 Over-Current
1:0201	SD502 - Output 1.2 Over-Current
1:0202	SD503 - Output 1.3 Over-Current SD504 - Output 2.1 Over-Current
1:0203	SD504 - Output 2.1 Over-Current SD505 - Output 2.2 Over-Current
1:0204	SD505 - Output 2.2 Over-Current SD506 - Output 2.3 Over-Current
1:0205	SD506 - Output 2.3 Over-Current SD507 - Output 3.1 Over-Current
1:0206	SD507 - Output 3.1 Over-Current SD508 - Output 3.2 Over-Current
1:0207	
	SD509 - Output 3.3 Over-Current
1:0209	SD510 - Output 4.1 Over-Current
1:0210	SD511 - Output 4.2 Over-Current

Address	Description
1:0211	SD512 - Output 4.3 Over-Current
1:0212	SD513 - Output 5.1 Over-Current
1:0213	SD514 - Output 5.2 Over-Current
1:0214	SD515 - Output 5.3 Over-Current
1:0215	SD516 - Output 6.1 Over-Current
1:0216	SD517 - Output 6.2 Over-Current
1:0217	SD518 - Output 6.3 Over-Current
1:0218	SD519 - Output 7.1 Over-Current (Spare)
1:0219	SD520 - Output 7.2 Over-Current (Spare)
1:0220	SD521 - Output 7.3 Over-Current (Spare)
1:0221	SD522 - Output 8.1 Over-Current (Spare)
1:0222	SD523 - Output 8.2 Over-Current (Spare)
1:0223	SD524 - Output 8.3 Over-Current (Spare)
1:0224	SD601 - Output 1.1 Open-Coil
1:0225	SD602 - Output 1.2 Open-Coil
1:0226	SD603 - Output 1.3 Open-Coil
1:0227	SD604 - Output 2.1 Open-Coil
1:0228	SD605 - Output 2.2 Open-Coil
1:0229	SD606 - Output 2.3 Open-Coil
1:0229	SD607 - Output 2.3 Open-Coil
1:0230	SD607 - Output 3.1 Open-Coll
1:0231	SD609 - Output 3.3 Open-Coil
1:0232	SD609 - Output 3.3 Open-Coll
1:0233	SD610 - Output 4.1 Open-Coll
1:0234	SD612 - Output 4.2 Open-Coll
1:0235	
1:0236	SD613 - Output 5.1 Open-Coil
	SD614 - Output 5.2 Open-Coil
1:0238 1:0239	SD615 - Output 5.3 Open-Coil SD616 - Output 6.1 Open-Coil
1:0240	SD617 - Output 6.2 Open-Coil
1:0241	SD618 - Output 6.3 Open-Coil
1:0242	SD619 - Output 7.1 Open-Coil (Spare)
1:0243	SD620 - Output 7.2 Open-Coil (Spare)
1:0244	SD621 - Output 7.3 Open-Coil (Spare)
1:0245	SD622 - Output 8.1 Open-Coil (Spare)
1:0246	SD623 - Output 8.2 Open-Coil (Spare)
1:0247	SD624 - Output 8.3 Open-Coil (Spare)
1:0248	SD701 - Output 1.1 CPD Deviation
1:0249	SD702 - Output 1.2 CPD Deviation
1:0250	SD703 - Output 1.3 CPD Deviation
1:0251	SD704 - Output 2.1 CPD Deviation
1:0252	SD705 - Output 2.2 CPD Deviation
1:0253	SD706 - Output 2.3 CPD Deviation
1:0254	SD707 - Output 3.1 CPD Deviation
1:0255	SD708 - Output 3.2 CPD Deviation
1:0256	SD709 - Output 3.3 CPD Deviation
1:0257	SD710 - Output 4.1 CPD Deviation
1:0258	SD711 - Output 4.2 CPD Deviation
1:0259	SD712 - Output 4.3 CPD Deviation
1:0260	SD713 - Output 5.1 CPD Deviation
1:0261	SD714 - Output 5.2 CPD Deviation
1:0262	SD715 - Output 5.3 CPD Deviation
1:0263	SD716 - Output 6.1 CPD Deviation

Address	Description
1:0264	SD717 - Output 6.2 CPD Deviation
1:0265	SD718 - Output 6.3 CPD Deviation
1:0266	SD719 - Output 7.1 CPD Deviation (Spare)
1:0267	SD720 - Output 7.2 CPD Deviation (Spare)
1:0268	SD721 - Output 7.3 CPD Deviation (Spare)
1:0269	SD722 - Output 8.1 CPD Deviation (Spare)
1:0270	SD723 - Output 8.2 CPD Deviation (Spare)
1:0270	SD724 - Output 8.3 CPD Deviation (Spare)
1:0272	SD751 - Temperature 1.1
1:0272	SD752 - Temperature 1.2
1:0274	SD753 - Temperature 1.3
1:0275	SD754 - Temperature 2.1
1:0275	SD755 - Temperature 2.2
1:0277	SD756 - Temperature 2.3
1:0277	SD757 - Temperature 3.1
1:0279	SD758 - Temperature 3.2
1:0280	SD759 - Temperature 3.3
1:0281	SD760 - Temperature 4.1
1:0282	SD761 - Temperature 4.2
1:0283	SD762 - Temperature 4.3
1:0284	SD763 - Temperature 5.1
1:0285	SD764 - Temperature 5.2
1:0286	SD765 - Temperature 5.3
1:0287	SD766 - Temperature 6.1
1:0288	SD767 - Temperature 6.2
1:0289	SD768 - Temperature 6.3
1:0290	SD769 - Temperature 7.1 (Spare)
1:0291	SD770 - Temperature 7.2 (Spare)
1:0292	SD771 - Temperature 7.3 (Spare)
1:0293	SD772 - Temperature 8.1 (Spare)
1:0294	SD773 - Temperature 8.2 (Spare)
1:0295	SD774 - Temperature 8.3 (Spare)
1:0296	SD801 - Timing Input Fault
1:0297	SD802 - Duration Input Fault
1:0298	SD803 - Speed #1 Fault
1:0299	SD804 - Speed #2 Fault
1:0300	SD805 - TDC #1 Fault
1:0301	SD806 - TDC #2 Fault
1:0302	SD807 - PHS #1 Fault (Spare)
1:0303	
1:0304	
1:0305	
1:0306	SD811 - Multiplexer #1 Over-Current
1:0307	SD812 - Multiplexer #2 Over-Current
1:0308	SD813 - Multiplexer #3 Over-Current
1:0309	SD814 - Multiplexer #4 Over-Current
1:0310	SD815 - Multiplexer #5 Over-Current
1:0311	SD816 - Multiplexer #6 Over-Current
1:0312	SD817 - Multiplexer #7 Over-Current (Spare)
1:0313	SD818 - Multiplexer #8 Over-Current (Spare)
1:0314	SD821 - Multiplexer #1 Injection Limit
1:0315	SD822 - Multiplexer #2 Injection Limit
1:0316	SD823 - Multiplexer #3 Injection Limit
	1 1 J. J J

In-Pulse II—Standard Multi-Point Driver

Address	Description
1:0317	SD824 - Multiplexer #4 Injection Limit
1:0318	SD825 - Multiplexer #5 Injection Limit
1:0319	SD826 - Multiplexer #6 Injection Limit
1:0320	SD827 - Multiplexer #7 Injection Limit
1:0321	SD828 - Multiplexer #8 Injection Limit
1:0322	SD831 - Driver Supply Voltage Low
1:0323	SD832 - Driver Supply Voltage High
1:0324	SD833 - Driver Temperature High
1:0325	SD834 - Driver EFI Voltage Low
1:0326	SD837 - Driver Modbus Fault
1:0327	SD838 - Driver CAN Fault
1:0328	EV901 - Driver Stopped Mode
1:0329	EV902 - Driver Running Mode
1:0330	EV903 - Online Test Mode
1:0331	EV904 - Driver Click-Test Mode
1:0332	EV905 - Temperature Balancer Active

Analog Reads

Address	Description	Units	Multiplier
3:0001	Main Duration	°CA	10
3:0002	Main Timing	°CA	10
3:0003	Speed (from hardware)	rpm	10
3:0004	Speed (from EFI_CORE)	rpm	10
3:0005	Average Temperature	°C	10
3:0006	Average CPD time	ms	1000
3:0007			
3:0008			
3:0009			
3:0010			
3:0011	Timing Output 1.1	°CA	10
3:0012	Timing Output 1.2	°CA	10
3:0013	Timing Output 1.3	°CA	10
3:0014	Timing Output 2.1	°CA	10
3:0015	Timing Output 2.2	°CA	10
3:0016	Timing Output 2.3	°CA	10
3:0017	Timing Output 3.1	°CA	10
3:0018	Timing Output 3.2	°CA	10
3:0019	Timing Output 3.3	°CA	10
3:0020	Timing Output 4.1	°CA	10
3:0021	Timing Output 4.2	°CA	10
3:0022	Timing Output 4.3	°CA	10
3:0023	Timing Output 5.1	°CA	10
3:0024	Timing Output 5.2	°CA	10
3:0025	Timing Output 5.3	°CA	10
3:0026	Timing Output 6.1	°CA	10
3:0027	Timing Output 6.2	°CA	10
3:0028	Timing Output 6.3	°CA	10
3:0029	Timing Output 7.1 (Spare)	°CA	10
3:0030	Timing Output 7.2 (Spare)	°CA	10
3:0031	Timing Output 7.3 (Spare)	°CA	10
3:0032	Timing Output 8.1 (Spare)	°CA	10

Address	Description	Units	Multiplier
3:0033	Timing Output 8.2 (Spare)	°CA	10
3:0034	Timing Output 8.3 (Spare)	°CA	10
3:0034	Duration Output 1.1	°CA	10
	· · ·	°CA	10
3:0036	Duration Output 1.2		
3:0037	Duration Output 1.3	°CA	10
3:0038	Duration Output 2.1	°CA	10
3:0039	Duration Output 2.2	°CA	10
3:0040	Duration Output 2.3	°CA	10
3:0041	Duration Output 3.1	°CA	10
3:0042	Duration Output 3.2	°CA	10
3:0043	Duration Output 3.3	°CA	10
3:0044	Duration Output 4.1	°CA	10
3:0045	Duration Output 4.2	°CA	10
3:0046	Duration Output 4.3	°CA	10
3:0047	Duration Output 5.1	°CA	10
3:0048	Duration Output 5.2	°CA	10
3:0049	Duration Output 5.3	°CA	10
3:0050	Duration Output 6.1	°CA	10
3:0051	Duration Output 6.2	°CA	10
3:0052	Duration Output 6.3	°CA	10
3:0053	Duration Output 7.1 (Spare)	°CA	10
3:0054	Duration Output 7.2 (Spare)	°CA	10
3:0055	Duration Output 7.3 (Spare)	°CA	10
3:0056	Duration Output 8.1 (Spare)	°CA	10
3:0057	Duration Output 8.2 (Spare)	°CA	10
3:0058	Duration Output 8.3 (Spare)	°CA	10
3:0059	Temperature 1.1	°C	10
3:0060	Temperature 1.2	°C	10
3:0061	Temperature 1.3	°C	10
3:0062	Temperature 2.1	°C	10
3:0063	Temperature 2.2	°C	10
3:0064	Temperature 2.3	°C	10
3:0065	Temperature 3.1	°C	10
3:0066	Temperature 3.2	0°C	10
3:0067	Temperature 3.3	0°C	10
3:0068	Temperature 4.1	0°C	10
3:0069	Temperature 4.2	0°C	10
3:0003	Temperature 4.3	0°C	10
3:0070	Temperature 5.1	0°C	10
3:0071	Temperature 5.2	0°C	10
3:0072	Temperature 5.3	0°C	10
3:0073	Temperature 6.1	0°C	10
3:0074	Temperature 6.2	0°C	10
3:0075	1 · ·	0°C	10
	Temperature 6.3	0°	10
3:0077	Temperature 7.1 (Spare)	0°C	
3:0078	Temperature 7.2 (Spare)	0°C	10
3:0079	Temperature 7.3 (Spare)		10
3:0080	Temperature 8.1 (Spare)	0°C	10
3:0081	Temperature 8.2 (Spare)	°C	10
3:0082	Temperature 8.3 (Spare)	°C	10

Analog Writes

Address	Description	Units	Multiplier
4:0001	Main Duration	°CA	10
4:0002	Main Timing	°CA	10
4:0003			Ì
4:0004			
4:0005			
4:0006			
4:0007			
4:0008			
4:0009			
4:0010			
4:0011	Timing Bias Output 1.1	°CA	100
4:0012	Timing Bias Output 1.2	°CA	100
4:0013	Timing Bias Output 1.3	°CA	100
4:0014	Timing Bias Output 2.1	°CA	100
4:0015	Timing Bias Output 2.2	°CA	100
4:0016	Timing Bias Output 2.3	°CA	100
4:0017	Timing Bias Output 3.1	°CA	100
4:0018	Timing Bias Output 3.2	°CA	100
4:0019	Timing Bias Output 3.3	°CA	100
4:0020	Timing Bias Output 4.1	°CA	100
4:0021	Timing Bias Output 4.2	°CA	100
4:0022	Timing Bias Output 4.3	°CA	100
4:0023	Timing Bias Output 5.1	°CA	100
4:0024	Timing Bias Output 5.2	°CA	100
4:0025	Timing Bias Output 5.3	°CA	100
4:0026	Timing Bias Output 6.1	°CA	100
4:0027	Timing Bias Output 6.2	°CA	100
4:0028	Timing Bias Output 6.3	°CA	100
4:0029	Timing Bias Output 7.1 (Spare)	°CA	100
4:0030	Timing Bias Output 7.2 (Spare)	°CA	100
4:0031	Timing Bias Output 7.3 (Spare)	°CA	100
4:0032	Timing Bias Output 8.1 (Spare)	°CA	100
4:0033	Timing Bias Output 8.2 (Spare)	°CA	100
4:0034	Timing Bias Output 8.3 (Spare)	°CA	100
4:0035	Duration Bias 1.1	°CA	100
4:0036	Duration Bias 1.2	°CA	100
4:0037	Duration Bias 1.3	°CA	100
4:0038	Duration Bias 2.1	°CA	100
4:0039	Duration Bias 2.2	°CA	100
4:0040	Duration Bias 2.3	°CA	100
4:0041	Duration Bias 3.1	°CA	100
4:0042	Duration Bias 3.2	°CA	100
4:0043	Duration Bias 3.3	°CA	100
4:0044	Duration Bias 4.1	°CA	100
4:0045	Duration Bias 4.2	°CA	100
4:0046	Duration Bias 4.3	°CA	100
4:0047	Duration Bias 5.1	°CA	100
4:0048	Duration Bias 5.2	°CA	100
4:0040	Duration Bias 5.3	°CA	100
4:0049	Duration Bias 6.1	°CA	100
1.0000		107	100

Address	Description	Units	Multiplier
4:0052	Duration Bias 6.3	°CA	100
4:0053	Duration Bias 7.1 (Spare)	°CA	100
4:0054	Duration Bias 7.2 (Spare)	°CA	100
4:0055	Duration Bias 7.3 (Spare)	°CA	100
4:0056	Duration Bias 8.1 (Spare)	°CA	100
4:0057	Duration Bias 8.2 (Spare)	°CA	100
4:0058	Duration Bias 8.3 (Spare)	°CA	100
4:0059	Temperature 1.1	°C	1
4:0060	Temperature 1.2	°C	1
4:0061	Temperature 1.3	°C	1
4:0062	Temperature 2.1	°C	1
4:0063	Temperature 2.2	°C	1
4:0064	Temperature 2.3	°C	1
4:0065	Temperature 3.1	°C	1
4:0066	Temperature 3.2	°C	1
4:0067	Temperature 3.3	°C	1
4:0068	Temperature 4.1	°C	1
4:0069	Temperature 4.2	°C	1
4:0070	Temperature 4.3	°C	1
4:0071	Temperature 5.1	°C	1
4:0072	Temperature 5.2	°C	1
4:0073	Temperature 5.3	°C	1
4:0074	Temperature 6.1	°C	1
4:0075	Temperature 6.2	°C	1
4:0076	Temperature 6.3	°C	1
4:0077	Temperature 7.1 (Spare)	°C	1
4:0078	Temperature 7.2 (Spare)	°C	1
4:0079	Temperature 7.3 (Spare)	°C	1
4:0080	Temperature 8.1 (Spare)	°C	1
4:0081	Temperature 8.2 (Spare)	°C	1
4:0082	Temperature 8.3 (Spare)	°C	1

Chapter 7. J1939 CAN Signals List

Introduction

This chapter lists the J1939 CAN PGN/SPN's supported by the In-PulseTM II – Standard Multi Point Driver system.

The control uses CAN WRITE messages to broadcast parameters, so they are available for monitoring & control by external systems like SCADA, PLC etc.

The control uses CAN READ messages to receive parameters sent from external systems like SCADA, PLC etc.

CAN READ messages (J1939 standard)

PGN 65187	SPN 1137 SPN 1138 SPN 1139 SPN 1140	Engine Exhaust Gas Port 1 Temperature Engine Exhaust Gas Port 2 Temperature Engine Exhaust Gas Port 3 Temperature Engine Exhaust Gas Port 4 Temperature
PGN 65186	SPN 1141 SPN 1142 SPN 1143 SPN 1144	Engine Exhaust Gas Port 5 Temperature Engine Exhaust Gas Port 6 Temperature Engine Exhaust Gas Port 7 Temperature Engine Exhaust Gas Port 8 Temperature
PGN 65185	SPN 1145 SPN 1146	Engine Exhaust Gas Port 9 Temperature

- SPN 1146Engine Exhaust Gas Port 10 TemperatureSPN 1147Engine Exhaust Gas Port 11 TemperatureSPN 1148Engine Exhaust Gas Port 12 Temperature
- PGN 65184SPN 1149Engine Exhaust Gas Port 13 TemperatureSPN 1150Engine Exhaust Gas Port 14 TemperatureSPN 1151Engine Exhaust Gas Port 15 TemperatureSPN 1152Engine Exhaust Gas Port 16 Temperature
- PGN 65183SPN 1153Engine Exhaust Gas Port 17 TemperatureSPN 1154Engine Exhaust Gas Port 18 TemperatureSPN 1155Engine Exhaust Gas Port 19 TemperatureSPN 1156Engine Exhaust Gas Port 20 Temperature

CAN READ messages (J1939 Woodward propriety)

PGN 65449	Duration Input [°CA] , Resolution=1/64 per bit, Offset=0
	Timing Input [°CA] , Resolution=1/64 per bit, Offset=0

BYTE 5.1	RUN permissive input
BYTE 5.2	Temp Balancing permissive input
BYTE 5.3	RESET command input
BYTE 5.4	Pre-Injection enable input

Transmission Rate <= 50ms for all data in this PGN

PGN 65452	BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7	Duration Offset #1 input [°CA] Duration Offset #2 input [°CA] Duration Offset #3 input [°CA] Duration Offset #4 input [°CA] Duration Offset #5 input [°CA] Duration Offset #6 input [°CA] Duration Offset #7 input [°CA]
	BYTE 8	Duration Offset #8 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <= 1s for all data in this PGN

PGN 65451	BYTE 1	Duration Offset #9 input [°CA]
	BYTE 2	Duration Offset #10 input [°CA]
	BYTE 3	Duration Offset #11 input [°CA]
	BYTE 4	Duration Offset #12 input [°CA]
	BYTE 5	Duration Offset #13 input [°CA]
	BYTE 6	Duration Offset #14 input [°CA]
	BYTE 7	Duration Offset #15 input [°CA]
	BYTE 8	Duration Offset #16 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <=1s for all data in this PGN

PGN 65450	BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6	Duration Offset #17 input [°CA] Duration Offset #18 input [°CA] Duration Offset #19 input [°CA] Duration Offset #20 input [°CA] Duration Offset #21 input [°CA] Duration Offset #22 input [°CA]
	BYTE 7 BYTE 8	Duration Offset #22 input [°CA] Duration Offset #24 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <= 1s for all data in this PGN

PGN 65455	BYTE 1 BYTE 2 BYTE 3 BYTE 4	Timing Offset #1 input [°CA] Timing Offset #2 input [°CA] Timing Offset #3 input [°CA]
	BYTE 5	Timing Offset #4 input [°CA] Timing Offset #5 input [°CA]
	BYTE 6 BYTE 7 BYTE 8	Timing Offset #6 input [°CA] Timing Offset #7 input [°CA] Timing Offset #8 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <= 1s for all data in this PGN

PGN 65454	BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7	Timing Offset #9 input [°CA] Timing Offset #10 input [°CA] Timing Offset #11 input [°CA] Timing Offset #12 input [°CA] Timing Offset #13 input [°CA] Timing Offset #14 input [°CA] Timing Offset #15 input [°CA]
	BYTE 8	Timing Offset #16 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <= 1s for all data in this PGN

PGN 65453	BYTE 1	Timing Offset #17 input [°CA]
	BYTE 2	Timing Offset #18 input [°CA]
	BYTE 3	Timing Offset #19 input [°CA]
	BYTE 4	Timing Offset #20 input [°CA]
	BYTE 5	Timing Offset #21 input [°CA]
	BYTE 6	Timing Offset #22 input [°CA]
	BYTE 7	Timing Offset #23 input [°CA]
	BYTE 8	Timing Offset #24 input [°CA]

Range=-15.785~15.785, Resolution=1/8 per bit, Offset=-16 Transmission Rate <= 1s for all data in this PGN

CAN WRITE messages (J1939 standard)

PGN 61444 SPN 190 Engine Speed

PGN 64851 SPN 4151 Engine Exhaust Gas Temperature Average

CAN WRITE messages (J1939 Woodward propriety)

PGN 65456	BYTE 1.1 BYTE 1.2 BYTE 1.3 BYTE 1.4 BYTE 1.5 BYTE 1.6 BYTE 1.7 BYTE 1.8	Major Alarm Minor Alarm Stopped Mode Click-Test Mode Running Mode Online Test Mode EFI permissive Speed Permissive
PGN 65456	BYTE 2.1 BYTE 2.2 BYTE 2.3 BYTE 2.4 BYTE 2.5 BYTE 2.6 BYTE 2.7 BYTE 2.8	Injection Active Temp Balancing Permissive Temp Balancing Active
PGN 65456	BYTE 3.1 BYTE 3.2 BYTE 3.3 BYTE 3.4 BYTE 3.5 BYTE 3.6 BYTE 3.7 BYTE 3.8	EFI Output 1.1 is used EFI Output 1.2 is used EFI Output 1.3 is used EFI Output 2.1 is used EFI Output 2.2 is used EFI Output 2.3 is used EFI Output 3.1 is used EFI Output 3.2 is used
PGN 65456	BYTE 4.1 BYTE 4.2 BYTE 4.3 BYTE 4.4 BYTE 4.5 BYTE 4.6 BYTE 4.7 BYTE 4.8	EFI Output 3.3 is used EFI Output 4.1 is used EFI Output 4.2 is used EFI Output 4.3 is used EFI Output 5.1 is used EFI Output 5.2 is used EFI Output 5.3 is used EFI Output 6.1 is used
PGN 65456	BYTE 5.1 BYTE 5.2 BYTE 5.3 BYTE 5.4 BYTE 5.5 BYTE 5.6 BYTE 5.7 BYTE 5.8	EFI Output 6.2 is used EFI Output 6.3 is used

PGN 65456	BYTE 6.1 BYTE 6.2 BYTE 6.3 BYTE 6.4 BYTE 6.5 BYTE 6.6 BYTE 6.7 BYTE 6.8	AL001 - Output 1.1 Over-Current AL002 - Output 1.2 Over-Current AL003 - Output 1.3 Over-Current AL004 - Output 2.1 Over-Current AL005 - Output 2.2 Over-Current AL006 - Output 2.3 Over-Current AL007 - Output 3.1 Over-Current AL008 - Output 3.2 Over-Current
PGN 65456	BYTE 7.1 BYTE 7.2 BYTE 7.3 BYTE 7.4 BYTE 7.5 BYTE 7.6 BYTE 7.7 BYTE 7.8	AL009 - Output 3.3 Over-Current AL010 - Output 4.1 Over-Current AL011 - Output 4.2 Over-Current AL012 - Output 4.3 Over-Current AL013 - Output 5.1 Over-Current AL014 - Output 5.2 Over-Current AL015 - Output 5.3 Over-Current AL016 - Output 6.1 Over-Current
PGN 65456	BYTE 8.1 BYTE 8.2 BYTE 8.3 BYTE 8.4 BYTE 8.5 BYTE 8.6 BYTE 8.7 BYTE 8.8	AL017 - Output 6.2 Over-Current AL018 - Output 6.3 Over-Current

Transmission Rate ~= 160ms for all data in this PGN

PGN 65457	BYTE 1.1 BYTE 1.2 BYTE 1.3 BYTE 1.4 BYTE 1.5 BYTE 1.6 BYTE 1.7 BYTE 1.8	AL101 - Output 1.1 Open-Coil AL102 - Output 1.2 Open-Coil AL103 - Output 1.3 Open-Coil AL104 - Output 2.1 Open-Coil AL105 - Output 2.2 Open-Coil AL106 - Output 2.3 Open-Coil AL107 - Output 3.1 Open-Coil AL108 - Output 3.2 Open-Coil
PGN 65457	BYTE 2.1 BYTE 2.2 BYTE 2.3 BYTE 2.4 BYTE 2.5 BYTE 2.6 BYTE 2.7 BYTE 2.8	AL109 - Output 3.3 Open-Coil AL110 - Output 4.1 Open-Coil AL111 - Output 4.2 Open-Coil AL112 - Output 4.3 Open-Coil AL113 - Output 5.1 Open-Coil AL114 - Output 5.2 Open-Coil AL115 - Output 5.3 Open-Coil AL116 - Output 6.1 Open-Coil
PGN 65457	BYTE 3.1 BYTE 3.2 BYTE 3.3 BYTE 3.4 BYTE 3.5 BYTE 3.6 BYTE 3.7 BYTE 3.8	AL117 - Output 6.2 Open-Coil AL118 - Output 6.3 Open-Coil

PGN 65457	BYTE 4.1 BYTE 4.2 BYTE 4.3 BYTE 4.4 BYTE 4.5 BYTE 4.6 BYTE 4.7 BYTE 4.8	AL201 - Output 1.1 CPD Deviation AL202 - Output 1.2 CPD Deviation AL203 - Output 1.3 CPD Deviation AL204 - Output 2.1 CPD Deviation AL205 - Output 2.2 CPD Deviation AL206 - Output 2.3 CPD Deviation AL207 - Output 3.1 CPD Deviation AL208 - Output 3.2 CPD Deviation
PGN 65457	BYTE 5.1 BYTE 5.2 BYTE 5.3 BYTE 5.4 BYTE 5.5 BYTE 5.6 BYTE 5.7 BYTE 5.8	AL209 - Output 3.3 CPD Deviation AL210 - Output 4.1 CPD Deviation AL211 - Output 4.2 CPD Deviation AL212 - Output 4.3 CPD Deviation AL213 - Output 5.1 CPD Deviation AL214 - Output 5.2 CPD Deviation AL215 - Output 5.3 CPD Deviation AL216 - Output 6.1 CPD Deviation
PGN 65457	BYTE 6.1 BYTE 6.2 BYTE 6.3 BYTE 6.4 BYTE 6.5 BYTE 6.6 BYTE 6.7 BYTE 6.8	AL217 - Output 6.2 CPD Deviation AL218 - Output 6.3 CPD Deviation
PGN 65457	BYTE 7.1 BYTE 7.2 BYTE 7.3 BYTE 7.4 BYTE 7.5 BYTE 7.6 BYTE 7.7 BYTE 7.8	AL301 - Temperature 1.1 AL302 - Temperature 1.2 AL303 - Temperature 1.3 AL304 - Temperature 2.1 AL305 - Temperature 2.2 AL306 - Temperature 2.3 AL307 - Temperature 3.1 AL308 - Temperature 3.2
PGN 65457	BYTE 8.1 BYTE 8.2 BYTE 8.3 BYTE 8.4 BYTE 8.5 BYTE 8.6 BYTE 8.7 BYTE 8.8	AL309 - Temperature 3.3 AL310 - Temperature 4.1 AL311 - Temperature 4.2 AL312 - Temperature 4.3 AL313 - Temperature 5.1 AL314 - Temperature 5.2 AL315 - Temperature 5.3 AL316 - Temperature 6.1

Transmission Rate ~= 160ms for all data in this PGN

PGN 65458	BYTE 1.1	AL317 - Temperature 6.2
	BYTE 1.2	AL318 - Temperature 6.3
	BYTE 1.3	
	BYTE 1.4	
	BYTE 1.5	
	BYTE 1.6	
	BYTE 1.7	
	BYTE 1.8	

nual 91525		In-Pulse II—Standard Multi-Pe
PGN 65458	BYTE 2.1 BYTE 2.2 BYTE 2.3 BYTE 2.4 BYTE 2.5 BYTE 2.6 BYTE 2.7 BYTE 2.8	AL401 - Timing Input Fault AL402 - Duration Input Fault AL403 - Speed #1 Fault AL404 - Speed #2 Fault AL405 - TDC #1 Fault AL406 - TDC #2 Fault AL407 - PHS #1 Fault
PGN 65458	BYTE 3.1 BYTE 3.2 BYTE 3.3 BYTE 3.4 BYTE 3.5 BYTE 3.6 BYTE 3.7 BYTE 3.8	AL411 - Multiplexer #1 Over-Current AL412 - Multiplexer #2 Over-Current AL413 - Multiplexer #3 Over-Current AL414 - Multiplexer #4 Over-Current AL415 - Multiplexer #5 Over-Current AL416 - Multiplexer #6 Over-Current
PGN 65458	BYTE 4.1 BYTE 4.2 BYTE 4.3 BYTE 4.4 BYTE 4.5 BYTE 4.6 BYTE 4.7 BYTE 4.8	AL421 - Multiplexer #1 Injection Limit AL422 - Multiplexer #2 Injection Limit AL423 - Multiplexer #3 Injection Limit AL424 - Multiplexer #4 Injection Limit AL425 - Multiplexer #5 Injection Limit AL426 - Multiplexer #6 Injection Limit
PGN 65458	BYTE 5.1 BYTE 5.2 BYTE 5.3 BYTE 5.4 BYTE 5.5 BYTE 5.6 BYTE 5.7 BYTE 5.8	AL431 - Driver Supply Voltage Low AL432 - Driver Supply Voltage High AL433 - Driver Temperature High AL434 - Driver EFI Voltage Low AL435 - Driver MCU Alarm AL436 - Driver System Alarm AL437 - Driver Modbus Fault AL438 - Driver CAN Fault
PGN 65458	BYTE 6.1 BYTE 6.2 BYTE 6.3 BYTE 6.4 BYTE 6.5 BYTE 6.6 BYTE 6.7 BYTE 6.8	
PGN 65458	BYTE 7.1 BYTE 7.2 BYTE 7.3 BYTE 7.4 BYTE 7.5 BYTE 7.6 BYTE 7.7 BYTE 7.8	SD501 - Output 1.1 Over-Current SD502 - Output 1.2 Over-Current SD503 - Output 1.3 Over-Current SD504 - Output 2.1 Over-Current SD505 - Output 2.2 Over-Current SD506 - Output 2.3 Over-Current SD507 - Output 3.1 Over-Current SD508 - Output 3.2 Over-Current

In-Pulse II—Standard Multi-Point Driver

PGN 65458	BYTE 8.1 BYTE 8.2 BYTE 8.3 BYTE 8.4 BYTE 8.5 BYTE 8.6 BYTE 8.7	SD509 - Output 3.3 Over-Current SD510 - Output 4.1 Over-Current SD511 - Output 4.2 Over-Current SD512 - Output 4.3 Over-Current SD513 - Output 5.1 Over-Current SD514 - Output 5.2 Over-Current SD515 - Output 5.3 Over-Current
	BYTE 8.8	SD516 - Output 6.1 Over-Current

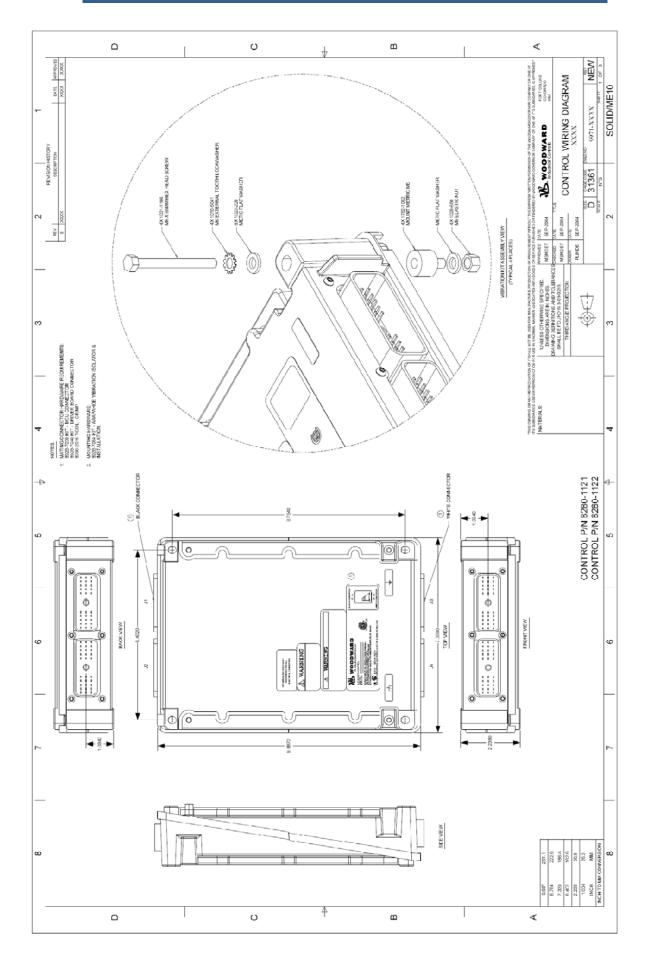
Transmission Rate ~= 160ms for all data in this PGN

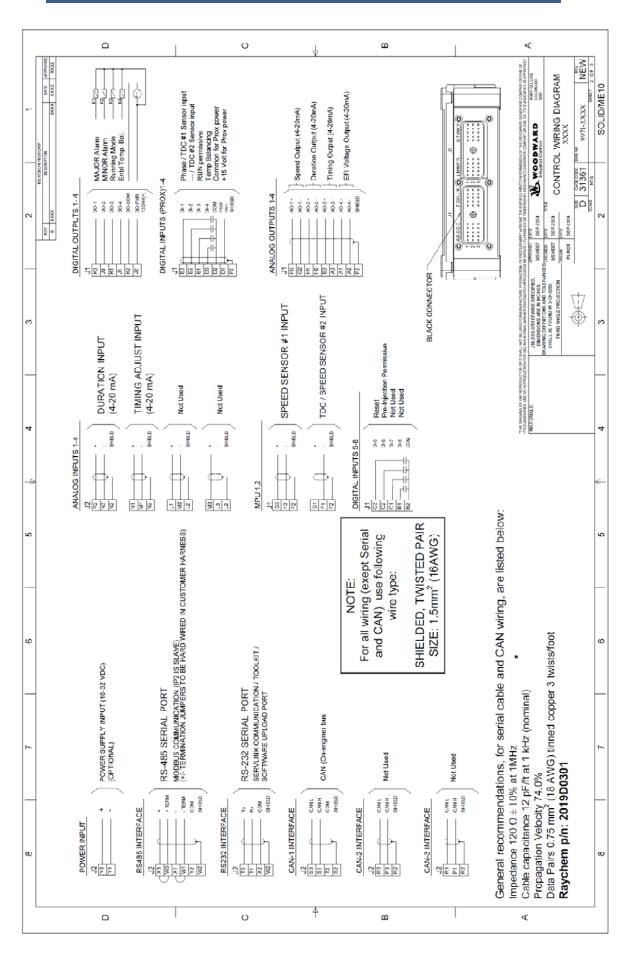
PGN 65459	BYTE 1.1 BYTE 1.2 BYTE 1.3 BYTE 1.4 BYTE 1.5 BYTE 1.6 BYTE 1.7 BYTE 1.8	SD517 - Output 6.2 Over-Current SD518 - Output 6.3 Over-Current
PGN 65459	BYTE 2.1 BYTE 2.2 BYTE 2.3 BYTE 2.4 BYTE 2.5 BYTE 2.6 BYTE 2.7 BYTE 2.8	SD601 - Output 1.1 Open-Coil SD602 - Output 1.2 Open-Coil SD603 - Output 1.3 Open-Coil SD604 - Output 2.1 Open-Coil SD605 - Output 2.2 Open-Coil SD606 - Output 2.3 Open-Coil SD607 - Output 3.1 Open-Coil SD608 - Output 3.2 Open-Coil
PGN 65459	BYTE 3.1 BYTE 3.2 BYTE 3.3 BYTE 3.4 BYTE 3.5 BYTE 3.6 BYTE 3.7 BYTE 3.8	SD609 - Output 3.3 Open-Coil SD610 - Output 4.1 Open-Coil SD611 - Output 4.2 Open-Coil SD612 - Output 4.3 Open-Coil SD613 - Output 5.1 Open-Coil SD614 - Output 5.2 Open-Coil SD615 - Output 5.3 Open-Coil SD616 - Output 6.1 Open-Coil
PGN 65459	BYTE 4.1 BYTE 4.2 BYTE 4.3 BYTE 4.4 BYTE 4.5 BYTE 4.6 BYTE 4.7 BYTE 4.8	SD617 - Output 6.2 Open-Coil SD618 - Output 6.3 Open-Coil
PGN 65459	BYTE 5.1 BYTE 5.2 BYTE 5.3 BYTE 5.4 BYTE 5.5 BYTE 5.6 BYTE 5.7 BYTE 5.8	SD701 - Output 1.1 CPD Deviation SD702 - Output 1.2 CPD Deviation SD703 - Output 1.3 CPD Deviation SD704 - Output 2.1 CPD Deviation SD705 - Output 2.2 CPD Deviation SD706 - Output 2.3 CPD Deviation SD707 - Output 3.1 CPD Deviation SD708 - Output 3.2 CPD Deviation

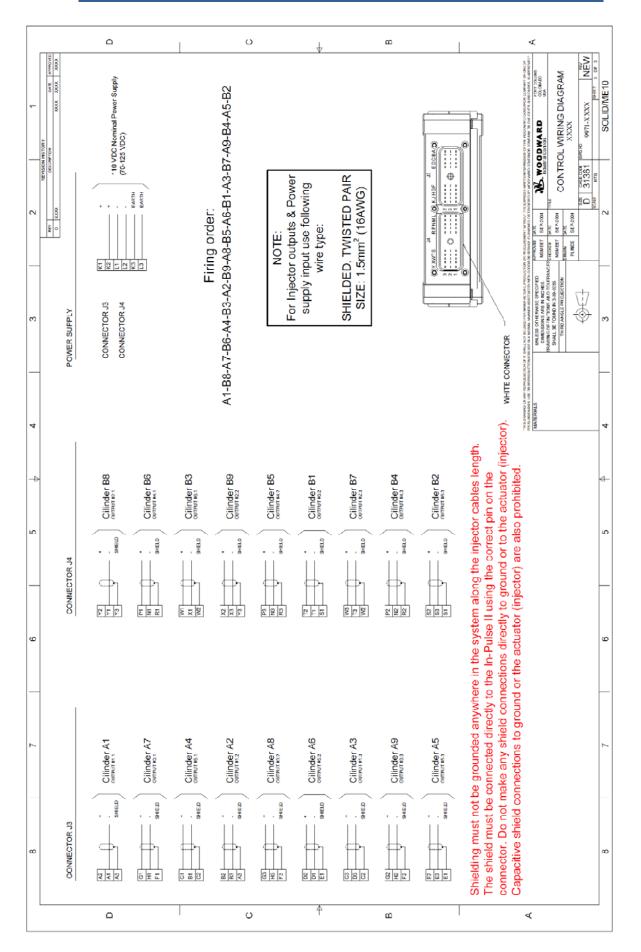
nual 91525		In-Pulse II–	-Standard Multi-
PGN 65459	BYTE 6.1 BYTE 6.2 BYTE 6.3 BYTE 6.4 BYTE 6.5 BYTE 6.6 BYTE 6.7 BYTE 6.8	SD709 - Output 3.3 SD710 - Output 4.1 SD711 - Output 4.2 SD712 - Output 4.3 SD713 - Output 5.1 SD714 - Output 5.2 SD715 - Output 5.3 SD716 - Output 6.1	CPD Deviation CPD Deviation CPD Deviation CPD Deviation CPD Deviation CPD Deviation
PGN 65459	BYTE 7.1 BYTE 7.2 BYTE 7.3 BYTE 7.4 BYTE 7.5 BYTE 7.6 BYTE 7.7 BYTE 7.8	SD717 - Output 6.2 SD718 - Output 6.3	
PGN 65459	BYTE 8.1 BYTE 8.2 BYTE 8.3 BYTE 8.4 BYTE 8.5 BYTE 8.6 BYTE 8.7 BYTE 8.8	SD751 - Temperatu SD752 - Temperatu SD753 - Temperatu SD754 - Temperatu SD755 - Temperatu SD756 - Temperatu SD757 - Temperatu SD758 - Temperatu	ıre 1.2 ıre 1.3 ıre 2.1 ıre 2.2 ıre 2.3 ıre 3.1
Transmission	Rate ~= 160ms	for all data in this PC	GN
PGN 65460	BYTE 1.1 BYTE 1.2 BYTE 1.3 BYTE 1.4 BYTE 1.5 BYTE 1.6 BYTE 1.7 BYTE 1.8	SD759 - Temperatu SD760 - Temperatu SD761 - Temperatu SD762 - Temperatu SD763 - Temperatu SD764 - Temperatu SD765 - Temperatu SD766 - Temperatu	ıre 4.1 ıre 4.2 ıre 5.1 ıre 5.2 ıre 5.3
PGN 65460	BYTE 2.1 BYTE 2.2 BYTE 2.3 BYTE 2.4 BYTE 2.5 BYTE 2.6 BYTE 2.7 BYTE 2.8	SD767 - Temperatu SD768 - Temperatu	
PGN 65460	BYTE 3.1 BYTE 3.2 BYTE 3.3 BYTE 3.4 BYTE 3.5 BYTE 3.6 BYTE 3.7 BYTE 3.8	SD801 - Timing Inp SD802 - Duration Ir SD803 - Speed #1 SD804 - Speed #2 SD805 - TDC #1 Fa SD806 - TDC #2 Fa SD807 - PHS #1 Fa	nput Fault Fault Fault ault ault

III I dioo ii	otandara matti	
PGN 65460	BYTE 4.1 BYTE 4.2 BYTE 4.3 BYTE 4.4 BYTE 4.5 BYTE 4.6 BYTE 4.7 BYTE 4.8	SD811 - Multiplexer #1 Over-Current SD812 - Multiplexer #2 Over-Current SD813 - Multiplexer #3 Over-Current SD814 - Multiplexer #4 Over-Current SD815 - Multiplexer #5 Over-Current SD816 - Multiplexer #6 Over-Current
PGN 65460	BYTE 5.1 BYTE 5.2 BYTE 5.3 BYTE 5.4 BYTE 5.5 BYTE 5.6 BYTE 5.7 BYTE 5.8	SD821 - Multiplexer #1 Injection Limit SD822 - Multiplexer #2 Injection Limit SD823 - Multiplexer #3 Injection Limit SD824 - Multiplexer #4 Injection Limit SD825 - Multiplexer #5 Injection Limit SD826 - Multiplexer #6 Injection Limit
PGN 65460	BYTE 6.1 BYTE 6.2 BYTE 6.3 BYTE 6.4 BYTE 6.5 BYTE 6.6 BYTE 6.7 BYTE 6.8	SD831 - Driver Supply Voltage Low SD832 - Driver Supply Voltage High SD833 - Driver Temperature High SD834 - Driver EFI Voltage Low SD837 - Driver Modbus Fault SD838 - Driver CAN Fault
PGN 65460	BYTE 7.1 BYTE 7.2 BYTE 7.3 BYTE 7.4 BYTE 7.5 BYTE 7.6 BYTE 7.7 BYTE 7.8	
PGN 65460	BYTE 8.1 BYTE 8.2 BYTE 8.3 BYTE 8.4 BYTE 8.5 BYTE 8.6 BYTE 8.7 BYTE 8.8	EV901 - Driver Stopped Mode EV902 - Driver Running Mode EV903 - Online Test Mode EV904 - Driver Click-Test Mode EV905 - Temperature Balancer Active
T	. D. (for all data to this DON

Transmission Rate ~= 160ms for all data in this PGN


PGN 65461BYTE 1&2Average CPD time [ms]Range=0-100, Resolution=1/512 per bit, Offset=0


BYTE 3~8


Transmission Rate ~= 160 ms for all data in this PGN

Chapter 8. Wiring Diagram

This chapter contains a typical Wiring Diagram for the IP2.

Chapter 9. Service Options

Product Service Options

If you are experiencing problems with the installation, or unsatisfactory performance of a Woodward product, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact the manufacturer or packager of your system.
- Contact the Woodward Full Service Distributor serving your area.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In many cases, your problem can be resolved over the phone. If not, you can select which course of action to pursue based on the available services listed in this chapter.

OEM and Packager Support: Many Woodward controls and control devices are installed into the equipment system and programmed by an Original Equipment Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the programming is password-protected by the OEM or packager, and they are the best source for product service and support. Warranty service for Woodward products shipped with an equipment system should also be handled through the OEM or Packager. Please review your equipment system documentation for details.

Woodward Business Partner Support: Woodward works with and supports a global network of independent business partners whose mission is to serve the users of Woodward controls, as described here:

- A **Full Service Distributor** has the primary responsibility for sales, service, system integration solutions, technical desk support, and aftermarket marketing of standard Woodward products within a specific geographic area and market segment.
- An Authorized Independent Service Facility (AISF) provides authorized service that includes repairs, repair parts, and warranty service on Woodward's behalf. Service (not new unit sales) is an AISF's primary mission.
- A **Recognized Engine Retrofitter (RER)** is an independent company that does retrofits and upgrades on reciprocating gas engines and dual-fuel conversions, and can provide the full line of Woodward systems and components for the retrofits and overhauls, emission compliance upgrades, long term service contracts, emergency repairs, etc.
- A Recognized Turbine Retrofitter (RTR) is an independent company that does both steam and gas turbine control retrofits and upgrades globally, and can provide the full line of Woodward systems and components for the retrofits and overhauls, long term service contracts, emergency repairs, etc.

A current list of Woodward Business Partners is available by searching on "25225" or "worldwide directory" at:

www.woodward.com/searchpublications.aspx

Woodward Factory Servicing Options

The following factory options for servicing Woodward products are available through your local Full-Service Distributor or the OEM or Packager of the equipment system, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is originally shipped from Woodward or a service is performed:

- Replacement/Exchange (24-hour service)
- Flat Rate Repair
- Flat Rate Remanufacture

Replacement/Exchange: Replacement/Exchange is a premium program designed for the user who is in need of immediate service. It allows you to request and receive a like-new replacement unit in minimum time (usually within 24 hours of the request), providing a suitable unit is available at the time of the request, thereby minimizing costly downtime. This is a flat-rate program and includes the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205).

This option allows you to call your Full-Service Distributor in the event of an unexpected outage, or in advance of a scheduled outage, to request a replacement control unit. If the unit is available at the time of the call, it can usually be shipped out within 24 hours. You replace your field control unit with the like-new replacement and return the field unit to the Full-Service Distributor.

Charges for the Replacement/Exchange service are based on a flat rate plus shipping expenses. You are invoiced the flat rate replacement/exchange charge plus a core charge at the time the replacement unit is shipped. If the core (field unit) is returned within 60 days, a credit for the core charge will be issued.

Flat Rate Repair: Flat Rate Repair is available for the majority of standard products in the field. This program offers you repair service for your products with the advantage of knowing in advance what the cost will be. All repair work carries the standard Woodward service warranty (Woodward Product and Service Warranty 5-01-1205) on replaced parts and labor.

Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat Rate Repair option with the exception that the unit will be returned to you in "like-new" condition and carry with it the full standard Woodward product warranty (Woodward Product and Service Warranty 5-01-1205). This option is applicable to mechanical products only.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned for repair, please contact your Full-Service Distributor in advance to obtain Return Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:

- return authorization number;
- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part number(s) and serial number(s);
- description of the problem;
- instructions describing the desired type of repair.

NOTICE

Packing a Control

Use the following materials when returning a complete control:

- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

Replacement Parts

When ordering replacement parts for controls, include the following information:

- the part number(s) (XXXX-XXXX) that is on the enclosure nameplate;
- the unit serial number, which is also on the nameplate.

Engineering Services

Woodward offers various Engineering Services for our products. For these services, you can contact us by telephone, by email, or through the Woodward website.

- Technical Support
- Product Training
- Field Service

Technical Support is available from your equipment system supplier, your local Full-Service Distributor, or from many of Woodward's worldwide locations, depending upon the product and application. This service can assist you with technical questions or problem solving during the normal business hours of the Woodward location you contact. Emergency assistance is also available during non-business hours by phoning Woodward and stating the urgency of your problem.

Product Training is available as standard classes at many of our worldwide locations. We also offer customized classes, which can be tailored to your needs and can be held at one of our locations or at your site. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability.

Field Service engineering on-site support is available, depending on the product and location, from many of our worldwide locations or from one of our Full-Service Distributors. The field engineers are experienced both on Woodward products as well as on much of the non-Woodward equipment with which our products interface.

For information on these services, please contact us via telephone, email us, or use our website: <u>www.woodward.com</u>.

How to Contact Woodward

For assistance, call one of the following Woodward facilities to obtain the address and phone number of the facility nearest your location where you will be able to get information and service.

Electrical Power Systems	Engine Systems	Turbine Systems
Facility Phone Number	Facility Phone Number	Facility Phone Number
Brazil +55 (19) 3708 4800	Brazil +55 (19) 3708 4800	Brazil +55 (19) 3708 4800
China+86 (512) 6762 6727	China+86 (512) 6762 6727	China+86 (512) 6762 6727
Germany +49 (0) 21 52 14 51	Germany+49 (711) 78954-0	India +91 (129) 4097100
India +91 (129) 4097100	India +91 (129) 4097100	Japan+81 (43) 213-2191
Japan+81 (43) 213-2191	Japan+81 (43) 213-2191	Korea+82 (51) 636-7080
Korea+82 (51) 636-7080	Korea+82 (51) 636-7080	The Netherlands -+31 (23) 5661111
Poland +48 12 295 13 00	The Netherlands -+31 (23) 5661111	Poland +48 12 295 13 00
United States+1 (970) 482-5811	United States+1 (970) 482-5811	United States+1 (970) 482-5811

You can also contact the Woodward Customer Service Department or consult our worldwide directory (search on "25225" or "worldwide directory" at: www.woodward.com/searchpublications.aspx) for the name of your nearest Woodward distributor or service facility.

Technical Assistance

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

Your Name	
Site Location	
Phone Number	
Fax Number	
Engine/Turbine Model Number	
Manufacturer	
Number of Cylinders (if applicable)	
Type of Fuel (gas, gaseous, steam, etc)	
Rating	
Application	
Control/Governor #1	
Woodward Part Number & Rev. Letter	
Control Description or Governor Type	
Serial Number	
Control/Governor #2	
Woodward Part Number & Rev. Letter	
Control Description or Governor Type	
Serial Number	
Control/Governor #3	
Woodward Part Number & Rev. Letter	
Control Description or Governor Type	

If you have an electronic or programmable control, please have the adjustment setting positions or the menu settings written down and with you at the time of the call.

We appreciate your comments about the content of our publications.

Send comments to: icinfo@woodward.com

Please reference publication 91525A.

PO Box 1519, Fort Collins CO 80522-1519, USA 1000 East Drake Road, Fort Collins CO 80525, USA Phone +1 (970) 482-5811 • Fax +1 (970) 498-3058

Email and Website—www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.